基于稳定网的数据流连接算法已有很多研究成果,但在实际应用中,还需要处理不同速率网络下的查询连接,这使得目前流行的基于稳定数据流且内存分配固定环境下的连接算法难以适用。介绍了一种在非对称数据率网络下的无阻塞排序归并连接算法...基于稳定网的数据流连接算法已有很多研究成果,但在实际应用中,还需要处理不同速率网络下的查询连接,这使得目前流行的基于稳定数据流且内存分配固定环境下的连接算法难以适用。介绍了一种在非对称数据率网络下的无阻塞排序归并连接算法SMA。SMA算法的连接运算分为两阶段:join during run creation和join during merge,第一阶段可用于网络无阻塞情况下通过内存刷新策略来生成头批连接结果,第二阶段用于数据源受阻时借助外存驻留数据继续生成查询连接结果,从而保证了连接结果产生的无阻塞性。试验证明,SMA对等值和空间连接效率很高。展开更多
排序合并连接是数据库系统一种重要的连接实现方式,比哈希连接有更广泛的应用.分布式环境下,数据分片、分布存储,面对昂贵的网络代价,进行高效排序合并连接的挑战巨大.传统策略首先针对连接数据进行排序,然后基于排好序的数据执行合并连...排序合并连接是数据库系统一种重要的连接实现方式,比哈希连接有更广泛的应用.分布式环境下,数据分片、分布存储,面对昂贵的网络代价,进行高效排序合并连接的挑战巨大.传统策略首先针对连接数据进行排序,然后基于排好序的数据执行合并连接.这两部分操作均基于原始数据进行操作,通常情况下,原始连接数据存在无用数据块,这些数据块无需连接,但会增加额外开销,包括网络开销.随着数据量的增多,出现无用数据块的概率增大,额外开销随之增多.传统策略没有预先处理这些无用数据块.针对这个问题,提出一种分布式环境下基于剪枝的并行排序合并连接策略(parallel sort-merge join based on prune,简称Pr_PSMJ).其特点是,连接发生之前高效完成对连接对象无用数据块的剪枝处理,提高整体连接效率.基本思想是,根据连接对象对应的连接分区数据统计信息,构造一种双边邻接表(bilateral adjacency list,简称BAL),用来对连接数据中无用数据块进行剪枝,并保证最终连接结果的正确性;剪枝完成后,利用BAL计算出各个最佳本地连接执行点,并指导分区数据的迁移,使数据移动量最小;在连接阶段,由于BAL保证本地连接执行节点的独立性,因此能够轻松并行执行整个连接过程,并在每个连接点本地利用多核环境完成局部并行排序合并连接;最后,将局部结果合并成最终结果.由于Pr_PSMJ中的高效剪枝策略是在连接执行之前完成的,因此几乎适合任何合并连接操作,并且对于其他连接策略也有借鉴作用.给出了基于Pr_PSMJ的算法的正确性、效率性以及适应性分析,并且给出实验验证,证明了在分布式大数据量排序合并连接情况下,Pr_PSMJ相对于其他策略能够有效减少网络开销,并提高连接效率.展开更多
文摘基于稳定网的数据流连接算法已有很多研究成果,但在实际应用中,还需要处理不同速率网络下的查询连接,这使得目前流行的基于稳定数据流且内存分配固定环境下的连接算法难以适用。介绍了一种在非对称数据率网络下的无阻塞排序归并连接算法SMA。SMA算法的连接运算分为两阶段:join during run creation和join during merge,第一阶段可用于网络无阻塞情况下通过内存刷新策略来生成头批连接结果,第二阶段用于数据源受阻时借助外存驻留数据继续生成查询连接结果,从而保证了连接结果产生的无阻塞性。试验证明,SMA对等值和空间连接效率很高。
文摘排序合并连接是数据库系统一种重要的连接实现方式,比哈希连接有更广泛的应用.分布式环境下,数据分片、分布存储,面对昂贵的网络代价,进行高效排序合并连接的挑战巨大.传统策略首先针对连接数据进行排序,然后基于排好序的数据执行合并连接.这两部分操作均基于原始数据进行操作,通常情况下,原始连接数据存在无用数据块,这些数据块无需连接,但会增加额外开销,包括网络开销.随着数据量的增多,出现无用数据块的概率增大,额外开销随之增多.传统策略没有预先处理这些无用数据块.针对这个问题,提出一种分布式环境下基于剪枝的并行排序合并连接策略(parallel sort-merge join based on prune,简称Pr_PSMJ).其特点是,连接发生之前高效完成对连接对象无用数据块的剪枝处理,提高整体连接效率.基本思想是,根据连接对象对应的连接分区数据统计信息,构造一种双边邻接表(bilateral adjacency list,简称BAL),用来对连接数据中无用数据块进行剪枝,并保证最终连接结果的正确性;剪枝完成后,利用BAL计算出各个最佳本地连接执行点,并指导分区数据的迁移,使数据移动量最小;在连接阶段,由于BAL保证本地连接执行节点的独立性,因此能够轻松并行执行整个连接过程,并在每个连接点本地利用多核环境完成局部并行排序合并连接;最后,将局部结果合并成最终结果.由于Pr_PSMJ中的高效剪枝策略是在连接执行之前完成的,因此几乎适合任何合并连接操作,并且对于其他连接策略也有借鉴作用.给出了基于Pr_PSMJ的算法的正确性、效率性以及适应性分析,并且给出实验验证,证明了在分布式大数据量排序合并连接情况下,Pr_PSMJ相对于其他策略能够有效减少网络开销,并提高连接效率.