Sonodynamic therapy(SDT) is an emerging approach that involves a combination of low-intensity ultrasound and specialized chemical agents known as sonosensitizers. Ultrasound can penetrate deeply into tissues and can b...Sonodynamic therapy(SDT) is an emerging approach that involves a combination of low-intensity ultrasound and specialized chemical agents known as sonosensitizers. Ultrasound can penetrate deeply into tissues and can be focused into a small region of a tumor to activate a sonosensitizer which offers the possibility of non-invasively eradicating solid tumors in a site-directed manner.In this article, we critically reviewed the currently accepted mechanisms of sonodynamic action and summarized the classification of sonosensitizers. At the same time, the breath of evidence from SDT-based studies suggests that SDT is promising for cancer treatment.展开更多
Applying ultrasound (US) to drug delivery and disease therapy is important work. Sonodynamic therapy (SDT)-a comprehensive therapy using US and a sonosensitizer-exhibits antineoplasfic activity in many tumors. In ...Applying ultrasound (US) to drug delivery and disease therapy is important work. Sonodynamic therapy (SDT)-a comprehensive therapy using US and a sonosensitizer-exhibits antineoplasfic activity in many tumors. In this stud)5 we investigated the feasibility of using a new sonosensitizer (sinoporphyrin sodium, DVDMS) loaded into liposome-microbubble complexes (DLMBs) as a possible candidate to enhance SDT against breast cancer. DLMBs were synthesized via the biofin-avidin linkage and confirmed to have good US response. US-induced cavitation played a key role to trigger a boosted payload release from DLMBs and improve the cellular uptake and intratumoral diffusion of DVDMS to realize better SDT effect. The combination of DLMBs and US treatment resulted in significant changes to cell morpholog34 mitochondria damage, and cell apoptosis in vitro. In vivo, the combined treatment markedly inhibited tumor growth, which appeared to result from increased apoptosis and reduced proliferation activity. The significant increase in the antitumor effect of DLMBs plus US suggests their potential use as a new approach to promote the killing activity of SDT against breast cancer.展开更多
Ultrasound can be used not only in examination, but also in therapy, especially in the therapy of cancer. Sonodynamic therapy is an experimental cancer therapy method which uses ultrasound to enhance the cytotoxic eff...Ultrasound can be used not only in examination, but also in therapy, especially in the therapy of cancer. Sonodynamic therapy is an experimental cancer therapy method which uses ultrasound to enhance the cytotoxic effects of agents known as sonosensitizers. It has been tested in vitro and in vivo. The ultrasound could penetrate the tissue and cell under some of conditions which directly changes cell membrane permeability, thereby allowing the delivery of exogenous molecules into the cells in some degree. Ultrasound could inhibit the proliferation or induce the apoptosis of cancer cells in vitro or in vivo. Recent researches indicated low-frequency and low-intensity ultrasound could induce cell apoptosis, which could be strengthened by sonodynamic sensitivity, microbubbles, chemotherapeutic drugs and so on. Most kinds of ultrasound suppressed the proliferation of cancer cells through inducing the apoptosis of cancer cells. The mechanism of apoptosis is not clear. In this review, we will focus on and discuss the mechanisms of the induction of cancer cell apoptosis by ultrasound.展开更多
Hepatocellular carcinoma (HCC) is one of the most common and deadly malignancies worldwide. To date, the survival of patients with HCC has not improved because of the insensitivity of HCC to conventional treatments....Hepatocellular carcinoma (HCC) is one of the most common and deadly malignancies worldwide. To date, the survival of patients with HCC has not improved because of the insensitivity of HCC to conventional treatments. Sonodynamic therapy (SDT) is a promising new approach that shows remarkable potential in the treatment of HCC. Here, we designed a simple, biocompatible, and multifunctional nanosystem that combines SDT and chemotherapy to treat HCC. This nanosystem, called HPDF nanoparticles, had a core-shell structure in which hematoporphyrin (HP) was complexed with doxorubicin (DOX) to form the hydrophobic core and the surface was coated with Pluronic F68 to form the hydrophilic shell. In HCC cells, HPDF nanoparticles in combination with ultrasonic irradiation (1.0 MHz, 1.5 W/cm2, 30 s) exhibited potent cytotoxicity, resulting from the synergistic effects of a large amount of reactive oxygen species generated from HP and DOX-induced DNA damage. Notabl~ HPDF nanoparticles in combination with ultrasonic irradiation significantly reversed drug resistance in Nanog-positive cancer stem cells (CSCs) in HCC. In nude mice bearing HCC tumors, HPDF nanoparticles efficiently accumulated in the tumors and reached the maximum levels within 6-8 h, post intravenous injection. HPDF nanoparticles, in combination with ultrasonic irradiation (1.0 MHz, 3 W/cm2, 5 min), suppressed tumor growth, angiogenesis, and collagen deposition, considerably. In summary, our results show that HPDF nanoparticles can effectively combine SDT and chemotherapy to inhibit HCC growth and progression through multiple mechanisms in both cellular and animal models.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.81573005 and 81371671)
文摘Sonodynamic therapy(SDT) is an emerging approach that involves a combination of low-intensity ultrasound and specialized chemical agents known as sonosensitizers. Ultrasound can penetrate deeply into tissues and can be focused into a small region of a tumor to activate a sonosensitizer which offers the possibility of non-invasively eradicating solid tumors in a site-directed manner.In this article, we critically reviewed the currently accepted mechanisms of sonodynamic action and summarized the classification of sonosensitizers. At the same time, the breath of evidence from SDT-based studies suggests that SDT is promising for cancer treatment.
文摘Applying ultrasound (US) to drug delivery and disease therapy is important work. Sonodynamic therapy (SDT)-a comprehensive therapy using US and a sonosensitizer-exhibits antineoplasfic activity in many tumors. In this stud)5 we investigated the feasibility of using a new sonosensitizer (sinoporphyrin sodium, DVDMS) loaded into liposome-microbubble complexes (DLMBs) as a possible candidate to enhance SDT against breast cancer. DLMBs were synthesized via the biofin-avidin linkage and confirmed to have good US response. US-induced cavitation played a key role to trigger a boosted payload release from DLMBs and improve the cellular uptake and intratumoral diffusion of DVDMS to realize better SDT effect. The combination of DLMBs and US treatment resulted in significant changes to cell morpholog34 mitochondria damage, and cell apoptosis in vitro. In vivo, the combined treatment markedly inhibited tumor growth, which appeared to result from increased apoptosis and reduced proliferation activity. The significant increase in the antitumor effect of DLMBs plus US suggests their potential use as a new approach to promote the killing activity of SDT against breast cancer.
基金supported by the Major Infrastructure Projects of Shanghai Science and Technology (No. 10JC1412600)
文摘Ultrasound can be used not only in examination, but also in therapy, especially in the therapy of cancer. Sonodynamic therapy is an experimental cancer therapy method which uses ultrasound to enhance the cytotoxic effects of agents known as sonosensitizers. It has been tested in vitro and in vivo. The ultrasound could penetrate the tissue and cell under some of conditions which directly changes cell membrane permeability, thereby allowing the delivery of exogenous molecules into the cells in some degree. Ultrasound could inhibit the proliferation or induce the apoptosis of cancer cells in vitro or in vivo. Recent researches indicated low-frequency and low-intensity ultrasound could induce cell apoptosis, which could be strengthened by sonodynamic sensitivity, microbubbles, chemotherapeutic drugs and so on. Most kinds of ultrasound suppressed the proliferation of cancer cells through inducing the apoptosis of cancer cells. The mechanism of apoptosis is not clear. In this review, we will focus on and discuss the mechanisms of the induction of cancer cell apoptosis by ultrasound.
基金This research was supported by the National Natural Science Foundation of China (Nos. 81573005, 81371671, and 81472683) and the National High-tech R&D Program of China (863 Program, No. 2015AA020403). The authors thank Prof. C. Qian (Third Military Medical University, Chongqing, China) for providing NanogPos CSCs and NanogNeg cells.
文摘Hepatocellular carcinoma (HCC) is one of the most common and deadly malignancies worldwide. To date, the survival of patients with HCC has not improved because of the insensitivity of HCC to conventional treatments. Sonodynamic therapy (SDT) is a promising new approach that shows remarkable potential in the treatment of HCC. Here, we designed a simple, biocompatible, and multifunctional nanosystem that combines SDT and chemotherapy to treat HCC. This nanosystem, called HPDF nanoparticles, had a core-shell structure in which hematoporphyrin (HP) was complexed with doxorubicin (DOX) to form the hydrophobic core and the surface was coated with Pluronic F68 to form the hydrophilic shell. In HCC cells, HPDF nanoparticles in combination with ultrasonic irradiation (1.0 MHz, 1.5 W/cm2, 30 s) exhibited potent cytotoxicity, resulting from the synergistic effects of a large amount of reactive oxygen species generated from HP and DOX-induced DNA damage. Notabl~ HPDF nanoparticles in combination with ultrasonic irradiation significantly reversed drug resistance in Nanog-positive cancer stem cells (CSCs) in HCC. In nude mice bearing HCC tumors, HPDF nanoparticles efficiently accumulated in the tumors and reached the maximum levels within 6-8 h, post intravenous injection. HPDF nanoparticles, in combination with ultrasonic irradiation (1.0 MHz, 3 W/cm2, 5 min), suppressed tumor growth, angiogenesis, and collagen deposition, considerably. In summary, our results show that HPDF nanoparticles can effectively combine SDT and chemotherapy to inhibit HCC growth and progression through multiple mechanisms in both cellular and animal models.