Two types of small iron clusters supported on γ-Al2O3-RT(dehydroxylated at room temperature) and γ-Al2O3-800 (dehydroxylated at 800 ℃) were prepared by solvated metal atom impregnation (SMAI) techniques. The ...Two types of small iron clusters supported on γ-Al2O3-RT(dehydroxylated at room temperature) and γ-Al2O3-800 (dehydroxylated at 800 ℃) were prepared by solvated metal atom impregnation (SMAI) techniques. The iron atom precursor complex, bis(toluene)iron(0) formed in the metal atom reactor, was impregnated into γ-Al2O3 having different concentrations of surface hydroxyl groups to study the effect of surface hydroxylation on the crucial stage of iron cluster formation. Catalysts prepared in this way were characterized by TEM, Mǒssbauer, and chemisorption measurements, and the results show that higher concentration of surface hydroxyl groups of γ-Al2O3-RT favors the formation of more positively charged supported iron cluster Fen/γ-Al2O3-RT, and the lower concentration of surface hydroxyl groups of γ-Al2O3-800 favors the formation of basically neutral supported iron cluster Fen/γ-Al2O3-800. The measured results also indicate that the higher concentration of surface hydroxyl groups causes the rapid decomposition of precursor complex, bis(toluene)iron(0), and favors the formation of relatively large iron cluster. Consequently, these two types of catalysts show different catalytic properties in Fischer-Tropsch reaction. The catalytic pattern of Fen/γ-Al2O3-RT in F-T reaction is similar to that of the unreduced γ-Fe2O3 and that of Fen/γ-Al2O3-800 is similar to that of the reduced α-Fe2O3.展开更多
The solvated metal atom impregnation (SMAI) method was used to prepare Co/SiO 2 and Co/La SiO 2 catalyst samples with 5%Co content. The XPS results showed that the cobalt particles both in SiO 2 and in La SiO 2 existe...The solvated metal atom impregnation (SMAI) method was used to prepare Co/SiO 2 and Co/La SiO 2 catalyst samples with 5%Co content. The XPS results showed that the cobalt particles both in SiO 2 and in La SiO 2 existed in zero valent state (Co\+0). The CO chemisorption results showed that the cobalt particle size (5 3 nm) of Co/La SiO 2 sample was much smaller than that (8 1 nm) of Co/SiO 2 sample. The turnover frequency (TOF) of CO on Co/La SiO 2 sample was higher than that on Co/SiO 2 sample in F T reaction (CO hydrogenation), which was probably due to the fact that the cobalt particle size in Co/La SiO 2 sample was much smaller than that in Co/SiO 2 sample. The experimental results also showed that the selectivity of Co/La SiO 2 sample for long chain paraffins was higher than that of Co/SiO 2 sample.展开更多
Supported Au catalysts for low-temperature CO oxidation were prepared by solvated metal atom impregnation (SMAI) and conventional impregnation (Cl). X-ray photoelectron spectroscopy (XPS) investigations indicated that...Supported Au catalysts for low-temperature CO oxidation were prepared by solvated metal atom impregnation (SMAI) and conventional impregnation (Cl). X-ray photoelectron spectroscopy (XPS) investigations indicated that the elemental gold in all the samples was in the metallic state, XRD measurements showed that the mean diameters of Au particles prepared by SMAI were smaller than those prepared by Cl with the same gold content. Catalytic tests showed that the SMAI catalyst had higher CO oxidation activity than the CI catalyst with the same compositions. Both SMAI and Cl catalysts exhibited high activity in low temperature CO oxidation. Full CO conversion was obtained at 323-383K.展开更多
Supported Cu catalysts for low-temperature CO oxidation were prepared by solvated metal atom impregnation (SMAI). X-ray photoelectron spectroscopy (XPS) investigations indicated that the copper in all the samples was...Supported Cu catalysts for low-temperature CO oxidation were prepared by solvated metal atom impregnation (SMAI). X-ray photoelectron spectroscopy (XPS) investigations indicated that the copper in all the samples was in a metallic state. XRD measurements showed that the mean diameters of Cu particles prepared by SMAI were small. Catalytical tests showed that the SMAI catalyst had high CO oxidation activity.展开更多
D-72 resin supported nickel-copper catalysts prepared by solvated metal atom impregnation (SMAI) were studied by magnetic measurements and X-ray photoelectron spectroscopy (XPS). The Ni particles on the catalysts are ...D-72 resin supported nickel-copper catalysts prepared by solvated metal atom impregnation (SMAI) were studied by magnetic measurements and X-ray photoelectron spectroscopy (XPS). The Ni particles on the catalysts are very highly dispersed and display superparamagnetic behaviour. Ni-Cu alloy clusters were found to be formed. The surface compositions are different from the bulk concentrations. In contrast with the surface enrichment in copper generally observed on conventional Ni-Cu catalysts, the surfaces of these catalysts are enriched in nickel. The nickel is in both zero and valent states, while copper is mainly in metallic state. Catalytic data show that the formation of Ni-Cu alloy clusters has a profound effect on the catalytic activities of the catalysts in the hydrogenation of furfural. The activity of the Ni:Cu ratio of one bimetallic catalysts is much higher than that of the Ni or Cu monometallic catalyst.展开更多
order to assess the promotional effects of La3+ on CO hydrogenation of Co/SiO2 catalyst, solvated metal atom impregnation (SMAI) method was used to prepare unpromoted 10% (mass fraction) Co/SiO2 and a series of La3+-p...order to assess the promotional effects of La3+ on CO hydrogenation of Co/SiO2 catalyst, solvated metal atom impregnation (SMAI) method was used to prepare unpromoted 10% (mass fraction) Co/SiO2 and a series of La3+-promoted 10% (mass fraction) Co/SiO2 catalyst with different La/Co atomic ratios (0.1, 0.3, 0.5). X-ray diffraction (XRD), and CO chemisorption measurements show that the cobalt particle size decreases as the La/Co ratios increase. X-ray photoelectron spectrescopy indicates that cobalt is in zero-valent state for all the samples. Catalytic test shows that the catalytic activity of La3+-promoted Co/SiO2 in CO hydrogenation is higher than that of unpromoted Co/SiO2, and enhances with the La/Co ratios increase. La3+ promotion also causes the enhanced selectivity of Co/SiO2 catalyst for higher hydrocarbon products.展开更多
Two kinds of small iron clusters supported on SiO2-200 (dehydroxylated at 200℃ and SiO2-600 (de-hydroxylated at 600℃) were prepared by Solvated Metal Atom Impregnation (SMAI) techniques. The iron atom precursor comp...Two kinds of small iron clusters supported on SiO2-200 (dehydroxylated at 200℃ and SiO2-600 (de-hydroxylated at 600℃) were prepared by Solvated Metal Atom Impregnation (SMAI) techniques. The iron atom precursor complex, bis (toluene) iron(0) formed in the metal atom reactor, was impregnated into SiO2 having different concentrations of surface hydroxyl groups to study the effect of surface hydroxylation on the crucial stage of iron cluster formation. Catalysts prepared in this way were characterized by THM, Mosbauer and chemisorption measurements, and the resules show that higher concentration of surface hydroxyl groups of SiO2-200 favours the formation of more positively charged support iron cluster Fen/SiO2-200 and the lower concentration of surface hydroxyl groups of SiO2-600 favours the formation of basically neutral supported iron cluster Fe2/SiO2-600. The measured results also indicate that the higher concentration of surface hydroxyl groups causes the precursor complex,bis(toluene) fron(0), to decompose more rapidly, and favours the formation of relatively large iron cluster. As a consequence, these two kinds of catalysts show different catalytic properties in Fischer-Tropsch reaction. The catalytic pattern of Fe/SiO2-200 in F-T reaction is similar to that of the unreduced a-Fe2O2, while Fe2/SiO2 -600 is similar to that of reduced α-Fe2O2.展开更多
文摘Two types of small iron clusters supported on γ-Al2O3-RT(dehydroxylated at room temperature) and γ-Al2O3-800 (dehydroxylated at 800 ℃) were prepared by solvated metal atom impregnation (SMAI) techniques. The iron atom precursor complex, bis(toluene)iron(0) formed in the metal atom reactor, was impregnated into γ-Al2O3 having different concentrations of surface hydroxyl groups to study the effect of surface hydroxylation on the crucial stage of iron cluster formation. Catalysts prepared in this way were characterized by TEM, Mǒssbauer, and chemisorption measurements, and the results show that higher concentration of surface hydroxyl groups of γ-Al2O3-RT favors the formation of more positively charged supported iron cluster Fen/γ-Al2O3-RT, and the lower concentration of surface hydroxyl groups of γ-Al2O3-800 favors the formation of basically neutral supported iron cluster Fen/γ-Al2O3-800. The measured results also indicate that the higher concentration of surface hydroxyl groups causes the rapid decomposition of precursor complex, bis(toluene)iron(0), and favors the formation of relatively large iron cluster. Consequently, these two types of catalysts show different catalytic properties in Fischer-Tropsch reaction. The catalytic pattern of Fen/γ-Al2O3-RT in F-T reaction is similar to that of the unreduced γ-Fe2O3 and that of Fen/γ-Al2O3-800 is similar to that of the reduced α-Fe2O3.
文摘The solvated metal atom impregnation (SMAI) method was used to prepare Co/SiO 2 and Co/La SiO 2 catalyst samples with 5%Co content. The XPS results showed that the cobalt particles both in SiO 2 and in La SiO 2 existed in zero valent state (Co\+0). The CO chemisorption results showed that the cobalt particle size (5 3 nm) of Co/La SiO 2 sample was much smaller than that (8 1 nm) of Co/SiO 2 sample. The turnover frequency (TOF) of CO on Co/La SiO 2 sample was higher than that on Co/SiO 2 sample in F T reaction (CO hydrogenation), which was probably due to the fact that the cobalt particle size in Co/La SiO 2 sample was much smaller than that in Co/SiO 2 sample. The experimental results also showed that the selectivity of Co/La SiO 2 sample for long chain paraffins was higher than that of Co/SiO 2 sample.
基金This project is supported by the Natural Science Foundation of Tianjin (No. 983603611)
文摘Supported Au catalysts for low-temperature CO oxidation were prepared by solvated metal atom impregnation (SMAI) and conventional impregnation (Cl). X-ray photoelectron spectroscopy (XPS) investigations indicated that the elemental gold in all the samples was in the metallic state, XRD measurements showed that the mean diameters of Au particles prepared by SMAI were smaller than those prepared by Cl with the same gold content. Catalytic tests showed that the SMAI catalyst had higher CO oxidation activity than the CI catalyst with the same compositions. Both SMAI and Cl catalysts exhibited high activity in low temperature CO oxidation. Full CO conversion was obtained at 323-383K.
文摘Supported Cu catalysts for low-temperature CO oxidation were prepared by solvated metal atom impregnation (SMAI). X-ray photoelectron spectroscopy (XPS) investigations indicated that the copper in all the samples was in a metallic state. XRD measurements showed that the mean diameters of Cu particles prepared by SMAI were small. Catalytical tests showed that the SMAI catalyst had high CO oxidation activity.
文摘D-72 resin supported nickel-copper catalysts prepared by solvated metal atom impregnation (SMAI) were studied by magnetic measurements and X-ray photoelectron spectroscopy (XPS). The Ni particles on the catalysts are very highly dispersed and display superparamagnetic behaviour. Ni-Cu alloy clusters were found to be formed. The surface compositions are different from the bulk concentrations. In contrast with the surface enrichment in copper generally observed on conventional Ni-Cu catalysts, the surfaces of these catalysts are enriched in nickel. The nickel is in both zero and valent states, while copper is mainly in metallic state. Catalytic data show that the formation of Ni-Cu alloy clusters has a profound effect on the catalytic activities of the catalysts in the hydrogenation of furfural. The activity of the Ni:Cu ratio of one bimetallic catalysts is much higher than that of the Ni or Cu monometallic catalyst.
文摘order to assess the promotional effects of La3+ on CO hydrogenation of Co/SiO2 catalyst, solvated metal atom impregnation (SMAI) method was used to prepare unpromoted 10% (mass fraction) Co/SiO2 and a series of La3+-promoted 10% (mass fraction) Co/SiO2 catalyst with different La/Co atomic ratios (0.1, 0.3, 0.5). X-ray diffraction (XRD), and CO chemisorption measurements show that the cobalt particle size decreases as the La/Co ratios increase. X-ray photoelectron spectrescopy indicates that cobalt is in zero-valent state for all the samples. Catalytic test shows that the catalytic activity of La3+-promoted Co/SiO2 in CO hydrogenation is higher than that of unpromoted Co/SiO2, and enhances with the La/Co ratios increase. La3+ promotion also causes the enhanced selectivity of Co/SiO2 catalyst for higher hydrocarbon products.
文摘Two kinds of small iron clusters supported on SiO2-200 (dehydroxylated at 200℃ and SiO2-600 (de-hydroxylated at 600℃) were prepared by Solvated Metal Atom Impregnation (SMAI) techniques. The iron atom precursor complex, bis (toluene) iron(0) formed in the metal atom reactor, was impregnated into SiO2 having different concentrations of surface hydroxyl groups to study the effect of surface hydroxylation on the crucial stage of iron cluster formation. Catalysts prepared in this way were characterized by THM, Mosbauer and chemisorption measurements, and the resules show that higher concentration of surface hydroxyl groups of SiO2-200 favours the formation of more positively charged support iron cluster Fen/SiO2-200 and the lower concentration of surface hydroxyl groups of SiO2-600 favours the formation of basically neutral supported iron cluster Fe2/SiO2-600. The measured results also indicate that the higher concentration of surface hydroxyl groups causes the precursor complex,bis(toluene) fron(0), to decompose more rapidly, and favours the formation of relatively large iron cluster. As a consequence, these two kinds of catalysts show different catalytic properties in Fischer-Tropsch reaction. The catalytic pattern of Fe/SiO2-200 in F-T reaction is similar to that of the unreduced a-Fe2O2, while Fe2/SiO2 -600 is similar to that of reduced α-Fe2O2.