In this paper, we use our method to solve the extended Lotka-Volterra equation and discrete KdV equation. With the help of Maple, we obtain a number of exact solutions to the two equations including soliton solutions ...In this paper, we use our method to solve the extended Lotka-Volterra equation and discrete KdV equation. With the help of Maple, we obtain a number of exact solutions to the two equations including soliton solutions presented by hyperbolic functions of sinh and cosh, periodic solutions presented by trigonometric functions of sin and cos, and rational solutions. This method can be used to solve some other nonlinear difference-differential equations.展开更多
The principal objective of this article is to construct new and further exact soliton solutions of the(2+1)-dimensional Heisenberg ferromagnetic spin chain equation which investigates the nonlinear dynamics of magnets...The principal objective of this article is to construct new and further exact soliton solutions of the(2+1)-dimensional Heisenberg ferromagnetic spin chain equation which investigates the nonlinear dynamics of magnets and explains their ordering in ferromagnetic materials.These solutions are exerted via the new extended FAN sub-equation method.We successfully obtain dark,bright,combined bright-dark,combined dark-singular,periodic,periodic singular,and elliptic wave solutions to this equation which are interesting classes of nonlinear excitation presenting spin dynamics in classical and semi-classical continuum Heisenberg systems.3D figures are illustrated under an appropriate selection of parameters.The applied technique is suitable to be used in gaining the exact solutions of most nonlinear partial/fractional differential equations which appear in complex phenomena.展开更多
文摘In this paper, we use our method to solve the extended Lotka-Volterra equation and discrete KdV equation. With the help of Maple, we obtain a number of exact solutions to the two equations including soliton solutions presented by hyperbolic functions of sinh and cosh, periodic solutions presented by trigonometric functions of sin and cos, and rational solutions. This method can be used to solve some other nonlinear difference-differential equations.
基金the Basic Science Research Unit,Scientific Research Deanship at Majmaah University,project number RGP-2019-4。
文摘The principal objective of this article is to construct new and further exact soliton solutions of the(2+1)-dimensional Heisenberg ferromagnetic spin chain equation which investigates the nonlinear dynamics of magnets and explains their ordering in ferromagnetic materials.These solutions are exerted via the new extended FAN sub-equation method.We successfully obtain dark,bright,combined bright-dark,combined dark-singular,periodic,periodic singular,and elliptic wave solutions to this equation which are interesting classes of nonlinear excitation presenting spin dynamics in classical and semi-classical continuum Heisenberg systems.3D figures are illustrated under an appropriate selection of parameters.The applied technique is suitable to be used in gaining the exact solutions of most nonlinear partial/fractional differential equations which appear in complex phenomena.