In this paper,some new formal similarity reduction solutions for the(2+1)-dimensional Nizhnik-Novikov-Veselov equation are derived.Firstly,we derive the similarity reduction of the NNV equation with the optimal system...In this paper,some new formal similarity reduction solutions for the(2+1)-dimensional Nizhnik-Novikov-Veselov equation are derived.Firstly,we derive the similarity reduction of the NNV equation with the optimal system of the admitted one-dimensional subalgebras.Secondly,by analyzing the reduced equation,three types of similarity solutions are derived,such as multi-soliton like solutions,variable separations solutions,and KdV type solutions.展开更多
基金Supported by Shandong Provincial Natural Science Foundation under Grant Nos. ZR2011AQ017 and ZR2010AM028
文摘In this paper,some new formal similarity reduction solutions for the(2+1)-dimensional Nizhnik-Novikov-Veselov equation are derived.Firstly,we derive the similarity reduction of the NNV equation with the optimal system of the admitted one-dimensional subalgebras.Secondly,by analyzing the reduced equation,three types of similarity solutions are derived,such as multi-soliton like solutions,variable separations solutions,and KdV type solutions.