New theories and technology in the electromagnetic field were put forward about DC casting of Al alloys, including the fundamental research works, i.e, effects of the electromagnetic field on solidus and liquidus, mac...New theories and technology in the electromagnetic field were put forward about DC casting of Al alloys, including the fundamental research works, i.e, effects of the electromagnetic field on solidus and liquidus, macrosegregation of the main alloying elements, microstructures, content of alloying elements in grains and grain size after solidification under electromagnetic field, and also including a new process DC casting under low frequency electromagnetic field(LFEMC), which can refine microstructure, eliminate macrosegregation, increase the content of alloying elements within grains, decrease the residual stress, avoid cracks and improve surface quality, and another new process DC casting under low frequency electromagnetic vibration(LFEVC), which is a high effective method for grain refining.展开更多
The effect of solid-solution-treatment on the semisolid microstructure of Zn-22Al with developed dendrites was investigated. Forming Zn-22Al products by semisolid metal processing offers significant advantages, such a...The effect of solid-solution-treatment on the semisolid microstructure of Zn-22Al with developed dendrites was investigated. Forming Zn-22Al products by semisolid metal processing offers significant advantages, such as reductions in macro-segregation, porosity and forming costs. Thermal and rnicrostructural analyses of the formed Zn-22Al alloy were performed by differential scanning calorimetry, scanning electron microscopy and optical microscopy. The changes in the microstructures and phase transformation in response to various solid- solution-treatments were analysed. In this study, as-cast samples were held isothermally at 330 ℃ for 0.5- 5 h and then partially remelted at a semisolid temperature of 438 ℃ for 1 h to produce a solid-globular grain structure in a liquid matrix. A non-dendritic semisolid microstructure could not be obtained when the traditionally cast Zn 22Al alloy with developed dendrites was subjected directly to partial remelting. After solid-solution-treatment at 330 ℃, the black interdendritic eutectics were dissolved, and the dendritic structures gradually transformed into uniform β structures when the treatment time was increased. The coarsened and merged dendrites were separated as a result of penetration by the liquid phase and melting of the residual eutectic at sites along the former grain boundaries. The microstructure of the solid-solution- treated sample transformed into a small globular structure; the best shape factor of 0.9, corresponding to a particle size of 40 ± 16 μm, is achieved when the sample was treated for 3 h followed by direct partial remelting into its semisolid zone.展开更多
Several important properties of the micron-powdered Sn-Ag-Cu-Ce solder, including the spreadability, spreading ratio, wetting time, and melting point, were investigated for verifying the effects of rare earth element ...Several important properties of the micron-powdered Sn-Ag-Cu-Ce solder, including the spreadability, spreading ratio, wetting time, and melting point, were investigated for verifying the effects of rare earth element Ce on solderabilities of micron-powdered Sn-Ag-Cu solder. The solidus and the liquidus of the micron-powdered Sn-Ag-Cu-Ce solder are 193.6℃ and 218.4℃, respectively, about 28℃ and 3℃ lower than the melting point of the block Sn-Ag-Cu solder, which reminds the existence of the surface effect of the micron-powdered solder. By adding Ce into Sn-Ag-Cu alloy, its wetting time on pure copper can be obviously decreased. For the Sn-Ag-Cu-0.03%Ce, the soldering temperature is 250℃, and the wetting time on pure copper is close to 1s, with the soldering temperature approaching to 260℃, the wetting time is dropped to 0.8s, which is close to the wetting time, 0.68s, of Sn-Pb solder at 235℃.展开更多
High manganese steels can damage the differential thermal analysis (DTA) instrument due to the manganese evaporation during high temperature experiments. After analyzing the relationship between residual oxygen and ...High manganese steels can damage the differential thermal analysis (DTA) instrument due to the manganese evaporation during high temperature experiments. After analyzing the relationship between residual oxygen and manganese evaporation, tanta- lum metal was employed to modify the crucible of DTA, and zirconium getter together with strict gas purification measures were applied to control the volatilization of manganese. By these modifications, problems of thermocouple damage and DTA instrument contamination were successfully resolved. Cobalt samples were adopted to calibrate the accuracy of DTA instruments under the same trial condition of high manganese steel samples, and the detection error was confirmed to be less than 1 ℃. Liquidus and soli- dus temperatures of high Mn steels were measured by improved DTA method. It was found that the liquidus temperatures of sam- ples tested by experiments increased linearly with the heating rates. To eliminate the effects of the heating rate, equilibrium liquidus temperature was determined by fitting the liquidus temperatures at different heating rates, and referred as real liquidus temperature. No clear relationship between solidus temperatures and heating rates was found, and the solidus temperature was finally set as the average value of several experimental data.展开更多
Electric arc furnace (EAF) dust from steel industries is listed by the United Sates EPA as a hazardous waste under the regulations of the Resource Conservation and Recovery Act due to the presence of lead, cadmium a...Electric arc furnace (EAF) dust from steel industries is listed by the United Sates EPA as a hazardous waste under the regulations of the Resource Conservation and Recovery Act due to the presence of lead, cadmium and chlorine. The disposal of the approximately 650000 t of EAF dust per year in the U.S. and Canada is an expensive and unresolved problem for the majority of steel companies. The Waelz process has been considered as the best process for treating the EAF dust. A process model, combined thermodynamic modeling with heat transfer calculations, has been developed to simulate the chemical reactions, mass and heat trans- fer and heat balance in the kiln. The injection of air into the slag and the temperature profile along the kiln have been modeled. The effect of (CaO+MgO)/SiO2 on the solidus temperature of slag has also been predicted and discussed. Some optimized results have been presented.展开更多
The liquidus and solidus temperatures of FeCrAl stainless steel were determined by differential scanning calorimetry(DSC) at different heating rates. They were also calculated by Thermo-calc software and empirical f...The liquidus and solidus temperatures of FeCrAl stainless steel were determined by differential scanning calorimetry(DSC) at different heating rates. They were also calculated by Thermo-calc software and empirical formulae separately. The accuracy of calculation results was assessed by comparison with the corresponding DSC results. The liquidus temperatures calculated by empirical formulae, which exhibited a maximum deviation of 8.6℃ were more accurate than those calculated using Thermo-calc, which exhibited a maximum deviation of 12.11℃. On the basis of Thermo-calc calculations performed under the Scheil model, the solidus temperature could be well determined from solid fraction(fS) vs. temperature(t) curves at fS = 0.99. Furthermore, a theoretical analysis to determine the solidus temperature with this method was also provided.展开更多
The paper presents the calculation results on the construction of solidus lines of phase diagrams for some binary metal systems based on cadmium, zinc and tellurium. The investigations have been carried out using the ...The paper presents the calculation results on the construction of solidus lines of phase diagrams for some binary metal systems based on cadmium, zinc and tellurium. The investigations have been carried out using the phase equilibrium thermodynamics and known liquidus lines. By the calculation method the solidus lines of phase diagrams of the Cd-Na, Cd-Tl, Te-Ga, Te-As, Te-Cu and Zn-Sn systems were constructed in the temperature range from the base component melting point to the eutectic transformation temperature. In the Cd-Tl, Te-As, Te-Cu and Zn-Sn systems a retrograde solubility of the second component in the solid phase was observed. The temperature and maximum solubility values at the retrograde behavior of solidus lines, as well as, the limiting solubility values of components at eutectic transformation in the systems based on Cd, Zn and Te were determined.展开更多
文摘New theories and technology in the electromagnetic field were put forward about DC casting of Al alloys, including the fundamental research works, i.e, effects of the electromagnetic field on solidus and liquidus, macrosegregation of the main alloying elements, microstructures, content of alloying elements in grains and grain size after solidification under electromagnetic field, and also including a new process DC casting under low frequency electromagnetic field(LFEMC), which can refine microstructure, eliminate macrosegregation, increase the content of alloying elements within grains, decrease the residual stress, avoid cracks and improve surface quality, and another new process DC casting under low frequency electromagnetic vibration(LFEVC), which is a high effective method for grain refining.
基金the Ministry of Science, Technology and Innovation(MOSTI)Malaysia for sponsoring this study under Grant 03-0 1-02-SF0047
文摘The effect of solid-solution-treatment on the semisolid microstructure of Zn-22Al with developed dendrites was investigated. Forming Zn-22Al products by semisolid metal processing offers significant advantages, such as reductions in macro-segregation, porosity and forming costs. Thermal and rnicrostructural analyses of the formed Zn-22Al alloy were performed by differential scanning calorimetry, scanning electron microscopy and optical microscopy. The changes in the microstructures and phase transformation in response to various solid- solution-treatments were analysed. In this study, as-cast samples were held isothermally at 330 ℃ for 0.5- 5 h and then partially remelted at a semisolid temperature of 438 ℃ for 1 h to produce a solid-globular grain structure in a liquid matrix. A non-dendritic semisolid microstructure could not be obtained when the traditionally cast Zn 22Al alloy with developed dendrites was subjected directly to partial remelting. After solid-solution-treatment at 330 ℃, the black interdendritic eutectics were dissolved, and the dendritic structures gradually transformed into uniform β structures when the treatment time was increased. The coarsened and merged dendrites were separated as a result of penetration by the liquid phase and melting of the residual eutectic at sites along the former grain boundaries. The microstructure of the solid-solution- treated sample transformed into a small globular structure; the best shape factor of 0.9, corresponding to a particle size of 40 ± 16 μm, is achieved when the sample was treated for 3 h followed by direct partial remelting into its semisolid zone.
文摘Several important properties of the micron-powdered Sn-Ag-Cu-Ce solder, including the spreadability, spreading ratio, wetting time, and melting point, were investigated for verifying the effects of rare earth element Ce on solderabilities of micron-powdered Sn-Ag-Cu solder. The solidus and the liquidus of the micron-powdered Sn-Ag-Cu-Ce solder are 193.6℃ and 218.4℃, respectively, about 28℃ and 3℃ lower than the melting point of the block Sn-Ag-Cu solder, which reminds the existence of the surface effect of the micron-powdered solder. By adding Ce into Sn-Ag-Cu alloy, its wetting time on pure copper can be obviously decreased. For the Sn-Ag-Cu-0.03%Ce, the soldering temperature is 250℃, and the wetting time on pure copper is close to 1s, with the soldering temperature approaching to 260℃, the wetting time is dropped to 0.8s, which is close to the wetting time, 0.68s, of Sn-Pb solder at 235℃.
基金Sponsored by National Natural Science Foundation of China(51374023)
文摘High manganese steels can damage the differential thermal analysis (DTA) instrument due to the manganese evaporation during high temperature experiments. After analyzing the relationship between residual oxygen and manganese evaporation, tanta- lum metal was employed to modify the crucible of DTA, and zirconium getter together with strict gas purification measures were applied to control the volatilization of manganese. By these modifications, problems of thermocouple damage and DTA instrument contamination were successfully resolved. Cobalt samples were adopted to calibrate the accuracy of DTA instruments under the same trial condition of high manganese steel samples, and the detection error was confirmed to be less than 1 ℃. Liquidus and soli- dus temperatures of high Mn steels were measured by improved DTA method. It was found that the liquidus temperatures of sam- ples tested by experiments increased linearly with the heating rates. To eliminate the effects of the heating rate, equilibrium liquidus temperature was determined by fitting the liquidus temperatures at different heating rates, and referred as real liquidus temperature. No clear relationship between solidus temperatures and heating rates was found, and the solidus temperature was finally set as the average value of several experimental data.
文摘Electric arc furnace (EAF) dust from steel industries is listed by the United Sates EPA as a hazardous waste under the regulations of the Resource Conservation and Recovery Act due to the presence of lead, cadmium and chlorine. The disposal of the approximately 650000 t of EAF dust per year in the U.S. and Canada is an expensive and unresolved problem for the majority of steel companies. The Waelz process has been considered as the best process for treating the EAF dust. A process model, combined thermodynamic modeling with heat transfer calculations, has been developed to simulate the chemical reactions, mass and heat trans- fer and heat balance in the kiln. The injection of air into the slag and the temperature profile along the kiln have been modeled. The effect of (CaO+MgO)/SiO2 on the solidus temperature of slag has also been predicted and discussed. Some optimized results have been presented.
基金financially supported by the National Natural Science Foundation of China (No. 51374023)
文摘The liquidus and solidus temperatures of FeCrAl stainless steel were determined by differential scanning calorimetry(DSC) at different heating rates. They were also calculated by Thermo-calc software and empirical formulae separately. The accuracy of calculation results was assessed by comparison with the corresponding DSC results. The liquidus temperatures calculated by empirical formulae, which exhibited a maximum deviation of 8.6℃ were more accurate than those calculated using Thermo-calc, which exhibited a maximum deviation of 12.11℃. On the basis of Thermo-calc calculations performed under the Scheil model, the solidus temperature could be well determined from solid fraction(fS) vs. temperature(t) curves at fS = 0.99. Furthermore, a theoretical analysis to determine the solidus temperature with this method was also provided.
文摘The paper presents the calculation results on the construction of solidus lines of phase diagrams for some binary metal systems based on cadmium, zinc and tellurium. The investigations have been carried out using the phase equilibrium thermodynamics and known liquidus lines. By the calculation method the solidus lines of phase diagrams of the Cd-Na, Cd-Tl, Te-Ga, Te-As, Te-Cu and Zn-Sn systems were constructed in the temperature range from the base component melting point to the eutectic transformation temperature. In the Cd-Tl, Te-As, Te-Cu and Zn-Sn systems a retrograde solubility of the second component in the solid phase was observed. The temperature and maximum solubility values at the retrograde behavior of solidus lines, as well as, the limiting solubility values of components at eutectic transformation in the systems based on Cd, Zn and Te were determined.