Aqueous zinc ion batteries show prospects for next-generation renewable energy storage devices.However,the practical applications have been limited by the issues derived from Zn anode.As one of serious problems,Zn den...Aqueous zinc ion batteries show prospects for next-generation renewable energy storage devices.However,the practical applications have been limited by the issues derived from Zn anode.As one of serious problems,Zn dendrite growth caused from the uncontrollable Zn deposition is unfavorable.Herein,with the aim to regulate Zn deposition,an artificial solid–electrolyte interface is subtly engineered with a perovskite type material,BaTiO3,which can be polarized,and its polarization could be switched under the external electric field.Resulting from the aligned dipole in BaTiO3 layer,zinc ions could move in order during cycling process.Regulated Zn migration at the anode/electrolyte interface contributes to the even Zn stripping/plating and confined Zn dendrite growth.As a result,the reversible Zn plating/stripping processes for over 2000 h have been achieved at 1 mA cm^(−2) with capacity of 1 mAh cm−2.Furthermore,this anode endowing the electric dipoles shows enhanced cycling stability for aqueous Zn-MnO2 batteries.The battery can deliver nearly 100%Coulombic efficiency at 2 Ag^(−1) after 300 cycles.展开更多
The aerospace industry relies heavily on lithium-ion batteries in instrumentation such as satellites and land rovers.This equipment is exposed to extremely low temperatures in space or on the Martian surface.The extre...The aerospace industry relies heavily on lithium-ion batteries in instrumentation such as satellites and land rovers.This equipment is exposed to extremely low temperatures in space or on the Martian surface.The extremely low temperatures affect the discharge characteristics of the battery and decrease its available working capacity.Various solvents,cosolvents,additives,and salts have been researched to fine tune the conductivity,solvation,and solid-electrolyte interface forming properties of the electrolytes.Several different resistive phenomena have been investigated to precisely determine the most limiting steps during charge and discharge at low temperatures.Longer mission lifespans as well as self-reliance on the chemistry are now highly desirable to allow low temperature performance rather than rely on external heating components.As Martian rovers are equipped with greater instrumentation and demands for greater energy storage rise,new materials also need to be adopted involving next generation lithiumion chemistry to increase available capacity.With these objectives in mind,tailoring of the electrolyte with highercapacity materials such as lithium metal and silicon anodes at low temperatures is of high priority.This review paper highlights the progression of electrolyte research for low temperature performance of lithium-ion batteries over the previous several decades.展开更多
Aluminum(Al) metal has been regarded as a promising anode for rechargeable batteries because of its natural abundance and high theoretical specific capacity. However, rechargeable aluminum batteries(RABs) using A1 met...Aluminum(Al) metal has been regarded as a promising anode for rechargeable batteries because of its natural abundance and high theoretical specific capacity. However, rechargeable aluminum batteries(RABs) using A1 metal as anode display poor cycling performances owing to interface problems between anode and electrolyte. The solid-electrolyte interphase(SEI) layer on the anode has been confirmed to be essential for improving cycling performances of rechargeable batteries. Therefore, we immerse the Al metal in ionic liquid electrolyte for some time before it is used as anode to remove the passive film and expose fresh Al to the electrolyte. Then the reactions of exposed Al, acid, oxygen and water in electrolyte are occurred to form an SEI layer in the cycle. Al/electrolyte/V_2 O_5 full batteries with the thin, uniform and stable SEI layer on Al metal anode perform high discharge capacity and coulombic efficiency(CE). This work illustrates that an SEI layer is formed on Al metal anode in the cycle using a simple and effective pretreatment process and results in superior cycling performances for RABs.展开更多
Li metal has been regarded as the holy grail for the next-generation Li-ion battery.Li dendrites issues,however,impede its practical application.In general,prolonging the sand time of Li nucleation and regulating homo...Li metal has been regarded as the holy grail for the next-generation Li-ion battery.Li dendrites issues,however,impede its practical application.In general,prolonging the sand time of Li nucleation and regulating homogeneous Li^(+) flux are effective approaches to suppress the dendrites formation and growth.Regarding this view,a functional polypropylene (PP) separator is developed to regulate ion transportation via a newly designed Li-based metal-organic framework (Li-MOF) coating.The Li-MOF crystallizes in the orthorhombic space group P212121 and features a double-walled three-dimensional (3D) structure with 1D channels.The well-defined intrinsic nanochannels of Li-MOF and the steric-hinerance effect both restrict free migration of anions,contributing to a high Li^(+) transference number of 0.65,which improve the Sand time of Li nucleation.Meanwhile,the Li-MOF coating with uniform porous structure promotes homogeneous Li^(+) flux at the surface of Li metal.Furthermore,the Li-MOF coating layer helps to build solid-electrolyte interphase (SEI) layer that comprises of inorganic Li F and Li_(3)N,which further prohibits the dendrites growth.Consequently,a highly stable Li plating/stripping cycling for over 1000 h is achieved.The functional separator also enables high-performance full lithium metal cells,the high-rate and long-stable cycling performance of Li Ni_(0.8)Mn_(0.1)Co_(0.1)(NMC811)-Li and Li Co O_(2)(LCO)-Li cells further demonstrate the feasibility of this concept.展开更多
Silicon oxide(SiO_(x))has received remarkable attention as a next-generation battery material;however,the sudden decrease in the cycling retention constitutes a significant challenge in facilitating its application.Tr...Silicon oxide(SiO_(x))has received remarkable attention as a next-generation battery material;however,the sudden decrease in the cycling retention constitutes a significant challenge in facilitating its application.Tris(2,2,2-trifluoroethyl)phosphite(TTFP),which can control parasitic reactions such as the pulverization of SiO_(x)anode materials and electrolyte decomposition,has been proposed to improve the lifespan of the cell.The electrochemical reduction of TTFP results in solid-electrolyte interphase(SEI)layers that are mainly composed of LiF,which occur at a higher potential than the working potential of the SiO_(x)anode and carbonate-based solvents.The electrolyte with TTFP exhibited a substantial improvement in cycling retention after 100 cycles,whereas the standard electrolyte showed acutely decreased retention.The thickness of the SiO_(x)anode with TTFP also changed only slightly without any considerable delamination spots,whereas the SiO_(x)anode without TTFP was prominently deformed by an enormous volume expansion with several internal cracks.The cycled SiO_(x)anode with TTFP exhibited less increase in resistance after cycling than that in the absence of TTFP,in addition to fewer decomposition adducts in corresponding X-ray photoelectron spectroscopy(XPS)analyses between the cycled SiO_(x)anodes.These results demonstrate that TTFP formed SEI layers at the SiO_(x)interface,which substantially reduced the pulverization of the SiO_(x)anode materials;in addition,electrolyte decomposition at the interface decreased,which led to improved cycling retention.展开更多
Aqueous rechargeable zinc ion batteries have received widespread attention due to their high energy density and low cost.However,zinc metal anodes face fatal dendrite growth and detrimental side reactions,which affect...Aqueous rechargeable zinc ion batteries have received widespread attention due to their high energy density and low cost.However,zinc metal anodes face fatal dendrite growth and detrimental side reactions,which affect the cycle stability and practical application of zinc ion batteries.Here,an in-situ formed hierarchical solid-electrolyte interphase composed of InF3,In,and ZnF2 layers with outside-in orientation on the Zn anode(denoted as Zn@InF3)is developed by a sample InF3 coating.The inner ultrathin ZnF2 interface between Zn anode and InF3 layer formed by the spontaneous galvanic replacement reaction between InF3 and Zn,is conductive to achieving uniform Zn deposition and inhibits the growth of Zinc dendrites due to the high electrical resistivity and Zn2+conductivity.Meanwhile,the middle uniformly generated metallic In and outside InF3 layers functioning as corrosion inhibitor suppressing the side reaction due to the waterproof surfaces,good chemical inactivity,and high hydrogen evolution overpotential.Besides,the as-prepared zinc anode enables dendrite-free Zn plating/stripping for more than 6,000 h at nearly 100%coulombic efficiency(CE).Furthermore,coupled with the MnO2 cathode,the full battery exhibits the long cycle of up to 1,000 cycles with a low negative-to-positive electrode capacity(N/P)ratio of 2.8.展开更多
In the development of Li-ion batteries(LIBs)with high energy/power density,long cycle-life,fast charging,and high safety,an insight into charge transfer reactions is required.Although electrochemical impedance spectro...In the development of Li-ion batteries(LIBs)with high energy/power density,long cycle-life,fast charging,and high safety,an insight into charge transfer reactions is required.Although electrochemical impedance spectroscopy(EIS)is regarded as a powerful diagnosis tool,it is not a direct but an indirect measurement.With respect to this,some critical questions need to be answered:(i)why EIS can reflect the kinetics of charge transfer reactions;(ii)what the inherent logical relationship between impedance models under different physical scenes is;(iii)how charge transfer reactions compete with each other at multiple scales.This work aims at answering these questions via developing a theory framework so as to mitigate the blindness and uncertainty in unveiling charge transfer reactions in LIBs.To systematically answer the above questions,this article is organized into a three-in-one(review,tutorial,and research)type and the following contributions are made:(i)a brief review is given for impedance model development of the LIBs over the past half century;(ii)an open source code toolbox is developed based on the unified impedance model;(iii)the competive mechanisms of charge transfer reactions are unveiled based on the developed EIS-Toolbox@LIB.This work not only clarifies theoretical fundamentals,but also provides an easy-to-use open source code for EIS-Toolbox@LIB to optimize fast charge/discharge,mitigate cycle aging,and improve energy/power density.展开更多
An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium brom...An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium bromide(CTAB),a cationic surfactant,is adopted to draw more anions into EDL by ionic interactions that shield the repelling force on anions during lithium plating.In situ electrochemical surface-enhanced Raman spectroscopy results combined with molecular dynamics simulations validate the enrichment of NO_(3)^(−)/FSI−anions in the EDL region due to the positively charged CTA^(+).In-depth analysis of SEI structure by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry results confirmed the formation of the inorganic-rich SEI,which helps improve the kinetics of Li^(+)transfer,lower the charge transfer activation energy,and homogenize Li deposition.As a result,the Li||Li symmetric cell in the designed electrolyte displays a prolongated cycling time from 500 to 1300 h compared to that in the blank electrolyte at 0.5 mA cm^(-2) with a capacity of 1 mAh cm^(-2).Moreover,Li||LiFePO_(4) and Li||LiCoO_(2) with a high cathode mass loading of>10 mg cm^(-2) can be stably cycled over 180 cycles.展开更多
Rechargeable zinc(Zn)metal batteries have long been plagued by dendrite growth and parasitic reactions due to the absence of a stable Zn-ion conductive solid-electrolyte interphase(SEI).Although the current strategies...Rechargeable zinc(Zn)metal batteries have long been plagued by dendrite growth and parasitic reactions due to the absence of a stable Zn-ion conductive solid-electrolyte interphase(SEI).Although the current strategies assist in suppressing dendritic Zn growth,it is still a challenge to obtain the operation-stability of Zn anode with high Coulombic efficiency(CE)required to implement a sustainable and long-cycling life of Zn metal batteries.In this perspective,we summarize the advantages of the functional gradient interphase(FGI)and try to fundamentally understand the transport behaviors of Zn ions,based on recently an article understanding Zn chemistry.The correlation between the function-orientated design of gradient interphase and key challenges of Zn metal anodes in accelerating Zn2+transport kinetics,improving electrode reversibility,and inhibiting Zn dendrite growth and side reactions was particularly emphasized.Finally,the rational design and innovative directions are provided for the development and application of functional gradient interphase in rechargeable Zn metal battery systems.展开更多
Potassium-ion batteries(PIBs)have been considered as one of the most promising alternatives to lithiumion batteries(LIBs)in view of their competitive energy density with significantly reduced product cost.Moreover,all...Potassium-ion batteries(PIBs)have been considered as one of the most promising alternatives to lithiumion batteries(LIBs)in view of their competitive energy density with significantly reduced product cost.Moreover,alloy-type materials are expected as a high-performance anode of PIBs thanks to their intrinsic chemical stability as well as high theoretical specific capacity.Unfortunately,the serious incompatibility between alloy-type active materials and electrolytes,especially for the formation of unstable solidelectrolyte interfacial(SEI)films,often leads to insufficient cycle life.Herein,the formation mechanism of SEI films in the K-storage systems based on carbon sphere confined Sb anode(Sb@CS)were investigated in commercially available electrolytes.Physical characterizations and theoretical calculation revealed that the solvents in the dilute electrolyte of 0.8 M KPF_(6)/EC+DEC were excessively decomposed on the interface to generate unstable SEI and thus result in inferior K-storage stability.On the contrary,a salt-concentrated electrolyte(3 M KFSI/DME)can generate inorganic-dominated stable SEI due to the preferential decomposition of anions.As a result,the prepared Sb@CS in the matched 3 M KFSI/DME electrolyte delivered a high reversible capacity of 467.8 m A h g^(-1)after 100 cycles at 100 m A g^(-1),with a slow capacity decay of 0.19%per cycle from the 10th to the 100th cycle.These findings are of great significance for revealing the interfacial reaction between electrodes and electrolytes as well as improving the stability of Sb-based anode materials for PIBs.展开更多
As a prospective alternative to lithium-ion batteries,rechargeable magnesium metal batteries(RMBs)have many unparalleled advantages,including direct use of Mg metal as the electrode;large nature abundance;intrinsicall...As a prospective alternative to lithium-ion batteries,rechargeable magnesium metal batteries(RMBs)have many unparalleled advantages,including direct use of Mg metal as the electrode;large nature abundance;intrinsically safe merits;high theoretical volumetric capacity.Nonetheless,there exist a large number of challenges on electrodes for their applications.Among them,surface passivation,uneven deposition/dissolution,and corrosion are critical issues that severely hinder the development of Mg anodes in RMBs.This review gives a specific comprehensive,and in-depth summary of mechanisms relative to these problems.Subsequently,it displays the protection progresses of the Mg metal anode via three-dimensional host nanostructure fabrication,Mg alloys anode design,current collector modification,artificial solid-electrolyte interphase construction,and electrolyte optimization.Finally,future perspectives and outlooks in developing the other blossom of these strategies for rechargeable Mg batteries are also discussed.This overview provides significant guidance for designing and fabricating high-performance Mg metal anodes in secondary Mg batteries and boosting their commercial applications.展开更多
Rechargeable magnesium batteries(RMBs)have attracted tremendous attention in energy storage ap-plications in term of high abundance,high specific capacity and remarkable safety of metallic magne-sium(Mg)anode.However,...Rechargeable magnesium batteries(RMBs)have attracted tremendous attention in energy storage ap-plications in term of high abundance,high specific capacity and remarkable safety of metallic magne-sium(Mg)anode.However,a serious passivation of Mg anode in the conventional electrolytes leads to extremely poor plating/stripping performance,further hindering its applications.Herein,we propose a convenient method to construct an artificial interphase layer on Mg anode by substitution and alloy-ing reactions between SbCl_(3) and Mg.This Sb-based artificial interphase layer containing mainly MgCl_(2) and Mg_(3) Sb_(2) endows the significantly improved interfacial kinetics and electrochemical performance of Mg anode.The overpotential of Mg plating/stripping in conventional Mg(TFSI)2/DME electrolytes is vastly reduced from over 2 V to 0.25-0.3 V.Combining experiments and calculations,we demonstrate that un-der the uniform distribution of MgCl_(2) and Mg_(3) Sb_(2),an electric field with a favorable potential gradient is formed on the anode surface,which enables swift Mg^(2+)migration.Meanwhile,this layer can inhibit the decomposition of electrolytes to protect anode.This work provides an in-depth exploration of the artificial solid-electrolyte interface(SEI)construction,and a more achievable and safe path to realize the application of metallic Mg anode in RMBs.展开更多
Lithium metal batteries(LMBs)are considered to be one of the most promising high-energy-density battery systems.However,their practical application in carbonate electrolytes is hampered by lithium dendrite growth,resu...Lithium metal batteries(LMBs)are considered to be one of the most promising high-energy-density battery systems.However,their practical application in carbonate electrolytes is hampered by lithium dendrite growth,resulting in short cycle life.Herein,an electrolyte regulation strategy is developed to improve the cyclability of LMBs in carbonate electrolytes by introducing LiNO3 using trimethyl phosphate with a slightly higher donor number compared to NO_(3)^(-)as a solubilizer.This not only allows the formaion of Li^(+)-coordinated NO3 but also achieves the regulation of electrolyte solvation structures,leading to the formation of robust and ion-conductive solid-electrolyte interphase films with inorganic-rich inner and organic-rich outer layers on the Li metal anodes.As a result,high Coulombic efficiency of 99.1%and stable plating/stripping cycling of Li metal anode in LilCu cells were realized.Furthermore,excellent performance was also demonstrated in Li||LiNi_(0.83)Co_(0.11)Mn_(0.06)O_(2)(NCM83)full cells and Cul/NCM83 anodefree cells using high mass-loading cathodes.This work provides a simple interphase engineering strategy through regulating the electrolyte solvation structures for high-energy-density LMBs.展开更多
A series of Si/C composites were fabricated based on pitch and Si powders with particle sizes of 30, 100, 500, and 3000 nm. The size effects of the Si particles in the Si/C composites were investigated for lithium-ion...A series of Si/C composites were fabricated based on pitch and Si powders with particle sizes of 30, 100, 500, and 3000 nm. The size effects of the Si particles in the Si/C composites were investigated for lithium-ion battery anodes. The nanoscale Si and Si/C composites exhibited good capacity retentions. Scanning electron microscopy showed that exterior and interior cracks emerging owing to volume expansion as well as parasitic reactions with the electrolyte could well explain the performance failure.展开更多
Aqueous rechargeable batteries have attracted enormous attention owning to their intrinsic characteristics of non-flammability, low cost, and the superior ionic conductivity of the aqueous electrolyte.However, the nar...Aqueous rechargeable batteries have attracted enormous attention owning to their intrinsic characteristics of non-flammability, low cost, and the superior ionic conductivity of the aqueous electrolyte.However, the narrow electrochemical stability window(1.23 V), imposed by hydrogen and oxygen evolution, constrains the overall energy density of batteries. The revolutionary "water-in-salt” electrolytes considerably expand the electrochemical stability window to 3 or even 4 volts, giving rise to a new series of high-voltage aqueous metal-ion chemistries. Herein, the recent advances in "water-in-salt” electrolytes for aqueous monovalent-ion(Li^(+), Na^(+), K^(+)) rechargeable batteries have been systematically reviewed. Meanwhile, the corresponding reaction mechanisms, electrochemical performances and the existing challenges and opportunities are also highlighted.展开更多
基金the partial financial support from the National Natural Science Foundation of China(21935003 and 21805182)National Key Research and Development Plan(2016YFB0901503)+1 种基金Shanghai Pujiang Program(18PJ1403800)the support from the Hundreds of Talents program of Sun Yat-sen University。
文摘Aqueous zinc ion batteries show prospects for next-generation renewable energy storage devices.However,the practical applications have been limited by the issues derived from Zn anode.As one of serious problems,Zn dendrite growth caused from the uncontrollable Zn deposition is unfavorable.Herein,with the aim to regulate Zn deposition,an artificial solid–electrolyte interface is subtly engineered with a perovskite type material,BaTiO3,which can be polarized,and its polarization could be switched under the external electric field.Resulting from the aligned dipole in BaTiO3 layer,zinc ions could move in order during cycling process.Regulated Zn migration at the anode/electrolyte interface contributes to the even Zn stripping/plating and confined Zn dendrite growth.As a result,the reversible Zn plating/stripping processes for over 2000 h have been achieved at 1 mA cm^(−2) with capacity of 1 mAh cm−2.Furthermore,this anode endowing the electric dipoles shows enhanced cycling stability for aqueous Zn-MnO2 batteries.The battery can deliver nearly 100%Coulombic efficiency at 2 Ag^(−1) after 300 cycles.
基金the National Aeronautics and Space Administration,USA(No.80NSSC19M0152).
文摘The aerospace industry relies heavily on lithium-ion batteries in instrumentation such as satellites and land rovers.This equipment is exposed to extremely low temperatures in space or on the Martian surface.The extremely low temperatures affect the discharge characteristics of the battery and decrease its available working capacity.Various solvents,cosolvents,additives,and salts have been researched to fine tune the conductivity,solvation,and solid-electrolyte interface forming properties of the electrolytes.Several different resistive phenomena have been investigated to precisely determine the most limiting steps during charge and discharge at low temperatures.Longer mission lifespans as well as self-reliance on the chemistry are now highly desirable to allow low temperature performance rather than rely on external heating components.As Martian rovers are equipped with greater instrumentation and demands for greater energy storage rise,new materials also need to be adopted involving next generation lithiumion chemistry to increase available capacity.With these objectives in mind,tailoring of the electrolyte with highercapacity materials such as lithium metal and silicon anodes at low temperatures is of high priority.This review paper highlights the progression of electrolyte research for low temperature performance of lithium-ion batteries over the previous several decades.
基金supported by the National Basic Research Program of China (No. 2015CB251100)the Program for New Century Excellent Talents in University (NCET-13-0033)+1 种基金the Beijing Co-construction Project (No. 20150939014)the Beijing Higher Institution Engineering Research Center of Power Battery and Chemical Energy Materials
文摘Aluminum(Al) metal has been regarded as a promising anode for rechargeable batteries because of its natural abundance and high theoretical specific capacity. However, rechargeable aluminum batteries(RABs) using A1 metal as anode display poor cycling performances owing to interface problems between anode and electrolyte. The solid-electrolyte interphase(SEI) layer on the anode has been confirmed to be essential for improving cycling performances of rechargeable batteries. Therefore, we immerse the Al metal in ionic liquid electrolyte for some time before it is used as anode to remove the passive film and expose fresh Al to the electrolyte. Then the reactions of exposed Al, acid, oxygen and water in electrolyte are occurred to form an SEI layer in the cycle. Al/electrolyte/V_2 O_5 full batteries with the thin, uniform and stable SEI layer on Al metal anode perform high discharge capacity and coulombic efficiency(CE). This work illustrates that an SEI layer is formed on Al metal anode in the cycle using a simple and effective pretreatment process and results in superior cycling performances for RABs.
基金the financial support provided by the National Natural Science Foundation of China (Nos. 21971113, 22175094, 51902165)the Natural Science Foundation of Jiangsu Province (No. BK20200800)+1 种基金Independent Innovation of Agricultural Science and Technology in Jiangsu Province (No. CX(21)3163)Natural Science Foundation of the Jiangsu Higher Education Institutions (No. 20KJA150001)。
文摘Li metal has been regarded as the holy grail for the next-generation Li-ion battery.Li dendrites issues,however,impede its practical application.In general,prolonging the sand time of Li nucleation and regulating homogeneous Li^(+) flux are effective approaches to suppress the dendrites formation and growth.Regarding this view,a functional polypropylene (PP) separator is developed to regulate ion transportation via a newly designed Li-based metal-organic framework (Li-MOF) coating.The Li-MOF crystallizes in the orthorhombic space group P212121 and features a double-walled three-dimensional (3D) structure with 1D channels.The well-defined intrinsic nanochannels of Li-MOF and the steric-hinerance effect both restrict free migration of anions,contributing to a high Li^(+) transference number of 0.65,which improve the Sand time of Li nucleation.Meanwhile,the Li-MOF coating with uniform porous structure promotes homogeneous Li^(+) flux at the surface of Li metal.Furthermore,the Li-MOF coating layer helps to build solid-electrolyte interphase (SEI) layer that comprises of inorganic Li F and Li_(3)N,which further prohibits the dendrites growth.Consequently,a highly stable Li plating/stripping cycling for over 1000 h is achieved.The functional separator also enables high-performance full lithium metal cells,the high-rate and long-stable cycling performance of Li Ni_(0.8)Mn_(0.1)Co_(0.1)(NMC811)-Li and Li Co O_(2)(LCO)-Li cells further demonstrate the feasibility of this concept.
基金This work was financially supported by the National Research Foundation of Korea financially(NRF)(No.NRF-2022R1F1A1069039)the Core Research Institute(CRI)Program,the Basic Science Research Program through the National Research Foundation of Korea(NRF),Ministry of Education(No.NRF-2017R1A6A1A06015181)the Technology Innovation Program(No.20011905)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea).
文摘Silicon oxide(SiO_(x))has received remarkable attention as a next-generation battery material;however,the sudden decrease in the cycling retention constitutes a significant challenge in facilitating its application.Tris(2,2,2-trifluoroethyl)phosphite(TTFP),which can control parasitic reactions such as the pulverization of SiO_(x)anode materials and electrolyte decomposition,has been proposed to improve the lifespan of the cell.The electrochemical reduction of TTFP results in solid-electrolyte interphase(SEI)layers that are mainly composed of LiF,which occur at a higher potential than the working potential of the SiO_(x)anode and carbonate-based solvents.The electrolyte with TTFP exhibited a substantial improvement in cycling retention after 100 cycles,whereas the standard electrolyte showed acutely decreased retention.The thickness of the SiO_(x)anode with TTFP also changed only slightly without any considerable delamination spots,whereas the SiO_(x)anode without TTFP was prominently deformed by an enormous volume expansion with several internal cracks.The cycled SiO_(x)anode with TTFP exhibited less increase in resistance after cycling than that in the absence of TTFP,in addition to fewer decomposition adducts in corresponding X-ray photoelectron spectroscopy(XPS)analyses between the cycled SiO_(x)anodes.These results demonstrate that TTFP formed SEI layers at the SiO_(x)interface,which substantially reduced the pulverization of the SiO_(x)anode materials;in addition,electrolyte decomposition at the interface decreased,which led to improved cycling retention.
基金This work was financially supported by the National Natural Science Foundation of China(No.52102261)Natural Science Foundation of Jiangsu Province(No.BK20210942)+1 种基金Jiangsu Province Science and Technology Young Talents Promotion Project(No.KYZ21053)Changzhou Science and Technology Young Talents Promotion Project(Nos.KYZ21005 and KYZ21039).
文摘Aqueous rechargeable zinc ion batteries have received widespread attention due to their high energy density and low cost.However,zinc metal anodes face fatal dendrite growth and detrimental side reactions,which affect the cycle stability and practical application of zinc ion batteries.Here,an in-situ formed hierarchical solid-electrolyte interphase composed of InF3,In,and ZnF2 layers with outside-in orientation on the Zn anode(denoted as Zn@InF3)is developed by a sample InF3 coating.The inner ultrathin ZnF2 interface between Zn anode and InF3 layer formed by the spontaneous galvanic replacement reaction between InF3 and Zn,is conductive to achieving uniform Zn deposition and inhibits the growth of Zinc dendrites due to the high electrical resistivity and Zn2+conductivity.Meanwhile,the middle uniformly generated metallic In and outside InF3 layers functioning as corrosion inhibitor suppressing the side reaction due to the waterproof surfaces,good chemical inactivity,and high hydrogen evolution overpotential.Besides,the as-prepared zinc anode enables dendrite-free Zn plating/stripping for more than 6,000 h at nearly 100%coulombic efficiency(CE).Furthermore,coupled with the MnO2 cathode,the full battery exhibits the long cycle of up to 1,000 cycles with a low negative-to-positive electrode capacity(N/P)ratio of 2.8.
基金the financial support from the National Science Foundation of China(22078190)the National Key R&D Plan of China(2020YFB1505802)。
文摘In the development of Li-ion batteries(LIBs)with high energy/power density,long cycle-life,fast charging,and high safety,an insight into charge transfer reactions is required.Although electrochemical impedance spectroscopy(EIS)is regarded as a powerful diagnosis tool,it is not a direct but an indirect measurement.With respect to this,some critical questions need to be answered:(i)why EIS can reflect the kinetics of charge transfer reactions;(ii)what the inherent logical relationship between impedance models under different physical scenes is;(iii)how charge transfer reactions compete with each other at multiple scales.This work aims at answering these questions via developing a theory framework so as to mitigate the blindness and uncertainty in unveiling charge transfer reactions in LIBs.To systematically answer the above questions,this article is organized into a three-in-one(review,tutorial,and research)type and the following contributions are made:(i)a brief review is given for impedance model development of the LIBs over the past half century;(ii)an open source code toolbox is developed based on the unified impedance model;(iii)the competive mechanisms of charge transfer reactions are unveiled based on the developed EIS-Toolbox@LIB.This work not only clarifies theoretical fundamentals,but also provides an easy-to-use open source code for EIS-Toolbox@LIB to optimize fast charge/discharge,mitigate cycle aging,and improve energy/power density.
基金financial support from Singapore Ministry of Education under its AcRF Tier 2 Grant No MOE-T2EP10123-0001Singapore National Research Foundation Investigatorship under Grant No NRF-NRFI08-2022-0009Academic Excellence Foundation of BUAA for PhD Students(applicant:Hongfei Xu).
文摘An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium bromide(CTAB),a cationic surfactant,is adopted to draw more anions into EDL by ionic interactions that shield the repelling force on anions during lithium plating.In situ electrochemical surface-enhanced Raman spectroscopy results combined with molecular dynamics simulations validate the enrichment of NO_(3)^(−)/FSI−anions in the EDL region due to the positively charged CTA^(+).In-depth analysis of SEI structure by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry results confirmed the formation of the inorganic-rich SEI,which helps improve the kinetics of Li^(+)transfer,lower the charge transfer activation energy,and homogenize Li deposition.As a result,the Li||Li symmetric cell in the designed electrolyte displays a prolongated cycling time from 500 to 1300 h compared to that in the blank electrolyte at 0.5 mA cm^(-2) with a capacity of 1 mAh cm^(-2).Moreover,Li||LiFePO_(4) and Li||LiCoO_(2) with a high cathode mass loading of>10 mg cm^(-2) can be stably cycled over 180 cycles.
基金the National Key R&D Program of China(Nos.2022YFB3805904 and 2022YFB3805900)the National Natural Science Foundation of China(Nos.22122207 and 21988102)CAS Project for Young Scientists in Basic Research(YSBR-039)。
文摘Rechargeable zinc(Zn)metal batteries have long been plagued by dendrite growth and parasitic reactions due to the absence of a stable Zn-ion conductive solid-electrolyte interphase(SEI).Although the current strategies assist in suppressing dendritic Zn growth,it is still a challenge to obtain the operation-stability of Zn anode with high Coulombic efficiency(CE)required to implement a sustainable and long-cycling life of Zn metal batteries.In this perspective,we summarize the advantages of the functional gradient interphase(FGI)and try to fundamentally understand the transport behaviors of Zn ions,based on recently an article understanding Zn chemistry.The correlation between the function-orientated design of gradient interphase and key challenges of Zn metal anodes in accelerating Zn2+transport kinetics,improving electrode reversibility,and inhibiting Zn dendrite growth and side reactions was particularly emphasized.Finally,the rational design and innovative directions are provided for the development and application of functional gradient interphase in rechargeable Zn metal battery systems.
基金support from the National Natural Science Foundation of China(21771107,21902077)the Natural Science Foundation of Jiangsu Province(BK20190381,BK20201287)。
文摘Potassium-ion batteries(PIBs)have been considered as one of the most promising alternatives to lithiumion batteries(LIBs)in view of their competitive energy density with significantly reduced product cost.Moreover,alloy-type materials are expected as a high-performance anode of PIBs thanks to their intrinsic chemical stability as well as high theoretical specific capacity.Unfortunately,the serious incompatibility between alloy-type active materials and electrolytes,especially for the formation of unstable solidelectrolyte interfacial(SEI)films,often leads to insufficient cycle life.Herein,the formation mechanism of SEI films in the K-storage systems based on carbon sphere confined Sb anode(Sb@CS)were investigated in commercially available electrolytes.Physical characterizations and theoretical calculation revealed that the solvents in the dilute electrolyte of 0.8 M KPF_(6)/EC+DEC were excessively decomposed on the interface to generate unstable SEI and thus result in inferior K-storage stability.On the contrary,a salt-concentrated electrolyte(3 M KFSI/DME)can generate inorganic-dominated stable SEI due to the preferential decomposition of anions.As a result,the prepared Sb@CS in the matched 3 M KFSI/DME electrolyte delivered a high reversible capacity of 467.8 m A h g^(-1)after 100 cycles at 100 m A g^(-1),with a slow capacity decay of 0.19%per cycle from the 10th to the 100th cycle.These findings are of great significance for revealing the interfacial reaction between electrodes and electrolytes as well as improving the stability of Sb-based anode materials for PIBs.
基金supported by the National Natural Science Foundation of China (Nos.52202374 and 51771162)the Top Young Scholars Foundation (No.BJ2021042)+2 种基金the Natural Science Foundation of Hebei province (No.B2021203016,E2022203167)the Natural Science Foundation of Hebei Province for Innovation Groups Program (No.C2022203003)support from the Ministry of Education Yangtze River Scholar Professor Program (No.T2020124).
文摘As a prospective alternative to lithium-ion batteries,rechargeable magnesium metal batteries(RMBs)have many unparalleled advantages,including direct use of Mg metal as the electrode;large nature abundance;intrinsically safe merits;high theoretical volumetric capacity.Nonetheless,there exist a large number of challenges on electrodes for their applications.Among them,surface passivation,uneven deposition/dissolution,and corrosion are critical issues that severely hinder the development of Mg anodes in RMBs.This review gives a specific comprehensive,and in-depth summary of mechanisms relative to these problems.Subsequently,it displays the protection progresses of the Mg metal anode via three-dimensional host nanostructure fabrication,Mg alloys anode design,current collector modification,artificial solid-electrolyte interphase construction,and electrolyte optimization.Finally,future perspectives and outlooks in developing the other blossom of these strategies for rechargeable Mg batteries are also discussed.This overview provides significant guidance for designing and fabricating high-performance Mg metal anodes in secondary Mg batteries and boosting their commercial applications.
基金financially supported by the Fundamental Re-search Funds for the Central Universities(No.2021CDJXDJH003)the Chongqing Technology Innovation and Application Devel-opment Project(No.CSTB2022TIAD-KPX0028).
文摘Rechargeable magnesium batteries(RMBs)have attracted tremendous attention in energy storage ap-plications in term of high abundance,high specific capacity and remarkable safety of metallic magne-sium(Mg)anode.However,a serious passivation of Mg anode in the conventional electrolytes leads to extremely poor plating/stripping performance,further hindering its applications.Herein,we propose a convenient method to construct an artificial interphase layer on Mg anode by substitution and alloy-ing reactions between SbCl_(3) and Mg.This Sb-based artificial interphase layer containing mainly MgCl_(2) and Mg_(3) Sb_(2) endows the significantly improved interfacial kinetics and electrochemical performance of Mg anode.The overpotential of Mg plating/stripping in conventional Mg(TFSI)2/DME electrolytes is vastly reduced from over 2 V to 0.25-0.3 V.Combining experiments and calculations,we demonstrate that un-der the uniform distribution of MgCl_(2) and Mg_(3) Sb_(2),an electric field with a favorable potential gradient is formed on the anode surface,which enables swift Mg^(2+)migration.Meanwhile,this layer can inhibit the decomposition of electrolytes to protect anode.This work provides an in-depth exploration of the artificial solid-electrolyte interface(SEI)construction,and a more achievable and safe path to realize the application of metallic Mg anode in RMBs.
基金supported by the National Key Research and Development Program of China(No.2019YFE0118800).
文摘Lithium metal batteries(LMBs)are considered to be one of the most promising high-energy-density battery systems.However,their practical application in carbonate electrolytes is hampered by lithium dendrite growth,resulting in short cycle life.Herein,an electrolyte regulation strategy is developed to improve the cyclability of LMBs in carbonate electrolytes by introducing LiNO3 using trimethyl phosphate with a slightly higher donor number compared to NO_(3)^(-)as a solubilizer.This not only allows the formaion of Li^(+)-coordinated NO3 but also achieves the regulation of electrolyte solvation structures,leading to the formation of robust and ion-conductive solid-electrolyte interphase films with inorganic-rich inner and organic-rich outer layers on the Li metal anodes.As a result,high Coulombic efficiency of 99.1%and stable plating/stripping cycling of Li metal anode in LilCu cells were realized.Furthermore,excellent performance was also demonstrated in Li||LiNi_(0.83)Co_(0.11)Mn_(0.06)O_(2)(NCM83)full cells and Cul/NCM83 anodefree cells using high mass-loading cathodes.This work provides a simple interphase engineering strategy through regulating the electrolyte solvation structures for high-energy-density LMBs.
基金Project supported from the“Strategic Priority Research Program”of the Chinese Academy of Sciences(Grant No.XDA09010102)
文摘A series of Si/C composites were fabricated based on pitch and Si powders with particle sizes of 30, 100, 500, and 3000 nm. The size effects of the Si particles in the Si/C composites were investigated for lithium-ion battery anodes. The nanoscale Si and Si/C composites exhibited good capacity retentions. Scanning electron microscopy showed that exterior and interior cracks emerging owing to volume expansion as well as parasitic reactions with the electrolyte could well explain the performance failure.
基金support from the China Postdoctoral Science Foundation Funded Project (2019M661464)the supported by the Australian Research Council (ARC) through the Discovery Project (DP180102297)+1 种基金the Future Fellow Project (FT180100705)the ARC Research Hub for Integrated Energy Storage Solutions (IH180100020)。
文摘Aqueous rechargeable batteries have attracted enormous attention owning to their intrinsic characteristics of non-flammability, low cost, and the superior ionic conductivity of the aqueous electrolyte.However, the narrow electrochemical stability window(1.23 V), imposed by hydrogen and oxygen evolution, constrains the overall energy density of batteries. The revolutionary "water-in-salt” electrolytes considerably expand the electrochemical stability window to 3 or even 4 volts, giving rise to a new series of high-voltage aqueous metal-ion chemistries. Herein, the recent advances in "water-in-salt” electrolytes for aqueous monovalent-ion(Li^(+), Na^(+), K^(+)) rechargeable batteries have been systematically reviewed. Meanwhile, the corresponding reaction mechanisms, electrochemical performances and the existing challenges and opportunities are also highlighted.