The formation mechanism of calcium vanadate and manganese vanadate and the difference between calcium and manganese in the reaction with vanadium are basic issues in the calcification roasting and manganese roasting p...The formation mechanism of calcium vanadate and manganese vanadate and the difference between calcium and manganese in the reaction with vanadium are basic issues in the calcification roasting and manganese roasting process with vanadium slag.In this work,CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples were prepared and roasted for different time periods to illustrate and compare the diffusion reaction mechanisms.Then,the changes in the diffusion product and diffusion coefficient were investigated and calculated based on scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) analysis.Results show that with the extension of the roasting time,the diffusion reaction gradually proceeds among the CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples.The regional boundaries of calcium and vanadium are easily identifiable for the CaO–V_(2)O_(5) diffusion couple.Meanwhile,for the MnO_(2)–V_(2)O_(5) diffusion couple,MnO_(2) gradually decomposes to form Mn_(2)O_(3),and vanadium diffuses into the interior of Mn_(2)O_(3).Only a part of vanadium combines with manganese to form the diffusion production layer.CaV_(2)O_(6) and MnV_(2)O_(6) are the interfacial reaction products of the CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples,respectively,whose thicknesses are 39.85 and 32.13μm when roasted for 16 h.After 16 h,both diffusion couples reach the reaction equilibrium due to the limitation of diffusion.The diffusion coefficient of the CaO–V_(2)O_(5) diffusion couple is higher than that of the MnO_(2)–V_(2)O_(5) diffusion couple for the same roasting time,and the diffusion reaction between vanadium and calcium is easier than that between vanadium and manganese.展开更多
In this work,a series of self-activated KYb(MoO_(4))_(2) phosphors with various x at% Er^(3+) doping concentrations(x=0.5,1,3,5,8,10,15) was synthesized by the solid-state reaction method.The phase structure of the as...In this work,a series of self-activated KYb(MoO_(4))_(2) phosphors with various x at% Er^(3+) doping concentrations(x=0.5,1,3,5,8,10,15) was synthesized by the solid-state reaction method.The phase structure of the as-prepared samples was analyzed by X-ray diffraction(XRD),XRD Rietveld refinement and Fourier transform infrared(FT-IR) spectroscopy.The as-prepared samples retain the orthorhombic structure with space group of Pbcn even Er^(3+) doping concentration up to 15 at%.High-purity upconversion(UC) green emission with green to red intensity ratio of 55 is observed from the as-prepared samples upon the excitation of 980 nm semiconductor laser and the optimum doping concentration of Er^(3+) ions in the self-activated KYb(MoO_(4))_(2) host is revealed as 3 at%.The strong green UC emission is confirmed as a two-photon process based on the power-dependent UC spectra.In addition,the fluorescence intensity ratios(FIRs) of the two thermally-coupled energy levels,namely ^(2)H_(11/2) and ^(4)S_(3/2).of Er^(3+) ions were investigated in the temperature region 300-570 K to evaluate the optical temperature sensor behavior of the sample.The maximum relative sensitivity(S_(R)) is determined to be 0.0069 K^(-1) at300 K and the absolute sensitivity(S_(A)) is determined to be 0.0126 K^(-1) at 300 K.The S_(A) of self-activated KYb(MoO_(4))2:Er^(3+)is almost twice that of traditional KY(MoO_(4))2:Er^(3+)/Yb^(3+)codoping phosphor.The results demonstrate that Er^(3+) ions doped self-activated KYb(MoO_(4))2 phosphor has promising application in visible display,trademark security and optical temperature sensors.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52174277 and 51874077)the Fundamental Funds for the Central Universities,China(No.N2225032)+1 种基金the China Postdoctoral Science Foundation(No.2022M720683)the Postdoctoral Fund of Northeastern University,China。
文摘The formation mechanism of calcium vanadate and manganese vanadate and the difference between calcium and manganese in the reaction with vanadium are basic issues in the calcification roasting and manganese roasting process with vanadium slag.In this work,CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples were prepared and roasted for different time periods to illustrate and compare the diffusion reaction mechanisms.Then,the changes in the diffusion product and diffusion coefficient were investigated and calculated based on scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) analysis.Results show that with the extension of the roasting time,the diffusion reaction gradually proceeds among the CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples.The regional boundaries of calcium and vanadium are easily identifiable for the CaO–V_(2)O_(5) diffusion couple.Meanwhile,for the MnO_(2)–V_(2)O_(5) diffusion couple,MnO_(2) gradually decomposes to form Mn_(2)O_(3),and vanadium diffuses into the interior of Mn_(2)O_(3).Only a part of vanadium combines with manganese to form the diffusion production layer.CaV_(2)O_(6) and MnV_(2)O_(6) are the interfacial reaction products of the CaO–V_(2)O_(5) and MnO_(2)–V_(2)O_(5) diffusion couples,respectively,whose thicknesses are 39.85 and 32.13μm when roasted for 16 h.After 16 h,both diffusion couples reach the reaction equilibrium due to the limitation of diffusion.The diffusion coefficient of the CaO–V_(2)O_(5) diffusion couple is higher than that of the MnO_(2)–V_(2)O_(5) diffusion couple for the same roasting time,and the diffusion reaction between vanadium and calcium is easier than that between vanadium and manganese.
基金supported by the National Natural Science Foundation of China (52202001)Open Project of Advanced Laser Technology Laboratory of Anhui Province (AHL2021KF07)+1 种基金Major Science and Technology of Anhui Province(202203a05020002)University Natural Science Research Project of Anhui Province (KJ2021A0388)。
文摘In this work,a series of self-activated KYb(MoO_(4))_(2) phosphors with various x at% Er^(3+) doping concentrations(x=0.5,1,3,5,8,10,15) was synthesized by the solid-state reaction method.The phase structure of the as-prepared samples was analyzed by X-ray diffraction(XRD),XRD Rietveld refinement and Fourier transform infrared(FT-IR) spectroscopy.The as-prepared samples retain the orthorhombic structure with space group of Pbcn even Er^(3+) doping concentration up to 15 at%.High-purity upconversion(UC) green emission with green to red intensity ratio of 55 is observed from the as-prepared samples upon the excitation of 980 nm semiconductor laser and the optimum doping concentration of Er^(3+) ions in the self-activated KYb(MoO_(4))_(2) host is revealed as 3 at%.The strong green UC emission is confirmed as a two-photon process based on the power-dependent UC spectra.In addition,the fluorescence intensity ratios(FIRs) of the two thermally-coupled energy levels,namely ^(2)H_(11/2) and ^(4)S_(3/2).of Er^(3+) ions were investigated in the temperature region 300-570 K to evaluate the optical temperature sensor behavior of the sample.The maximum relative sensitivity(S_(R)) is determined to be 0.0069 K^(-1) at300 K and the absolute sensitivity(S_(A)) is determined to be 0.0126 K^(-1) at 300 K.The S_(A) of self-activated KYb(MoO_(4))2:Er^(3+)is almost twice that of traditional KY(MoO_(4))2:Er^(3+)/Yb^(3+)codoping phosphor.The results demonstrate that Er^(3+) ions doped self-activated KYb(MoO_(4))2 phosphor has promising application in visible display,trademark security and optical temperature sensors.