Li transient concentration distribution in spherical active material particles can affect the maximum power density and the safe operating regime of the electric vehicles(EVs). On one hand, the quasiexact/exact soluti...Li transient concentration distribution in spherical active material particles can affect the maximum power density and the safe operating regime of the electric vehicles(EVs). On one hand, the quasiexact/exact solution obtained in the time/frequency domain is time-consuming and just as a reference value for approximate solutions;on the other hand, calculation errors and application range of approximate solutions not only rely on approximate algorithms but also on discharge modes. For the purpose to track the transient dynamics for Li solid-phase diffusion in spherical active particles with a tolerable error range and for a wide applicable range, it is necessary to choose optimal approximate algorithms in terms of discharge modes and the nature of active material particles. In this study, approximation methods,such as diffusion length method, polynomial profile approximation method, Padé approximation method,pseudo steady state method, eigenfunction-based Galerkin collocation method, and separation of variables method for solving Li solid-phase diffusion in spherical active particles are compared from calculation fundamentals to algorithm implementation. Furthermore, these approximate solutions are quantitatively compared to the quasi-exact/exact solution in the time/frequency domain under typical discharge modes, i.e., start-up, slow-down, and speed-up. The results obtained from the viewpoint of time-frequency analysis offer a theoretical foundation on how to track Li transient concentration profile in spherical active particles with a high precision and for a wide application range. In turn, optimal solutions of Li solid diffusion equations for spherical active particles can improve the reliability in predicting safe operating regime and estimating maximum power for automotive batteries.展开更多
The dynamic processes and characteristics of solid phase diffusion-bonding of interfacial atoms at high tempera-tures and the effect of that on bonding strength of Ni(111)/)/-Al_(2)O_(3)(0001)interface were investigat...The dynamic processes and characteristics of solid phase diffusion-bonding of interfacial atoms at high tempera-tures and the effect of that on bonding strength of Ni(111)/)/-Al_(2)O_(3)(0001)interface were investigated through molecular dynamics.It is shown that atomic diffusion occurs at the Ni/Al_(2)O_(3) interface in the temperature range from 698 K to 1,098 K,and proceeds mainly from the Ni side to the ) Al_(2)O_(3) side.The interface was previously reconstructed by solid bonding below the melting temperature,leading to the amorphization of the interface.Be-sides,the intermetallic complexes such as Al_(m)Ni_(n)(e.g.,AlNi_(3)),metal oxide NiO and Ni-Al-O bonds were formed gradually during the diffusion process of atoms.The formation mechanisms of the Ni-Al,Ni-O,and Ni-Al-O bonds are revealed.Based on the reconstructed structure,the adhesion effort at the interface is compared.The higher the temperature,the larger the bond number and the higher the interfacial bonding strength.展开更多
In this study, a novel rapid solid carburizing process with a large diffusion depth using nano-diamonds(NDs) was conducted for low carbon steel. Changes of annealed NDs were obtained by Raman spectroscopy and transm...In this study, a novel rapid solid carburizing process with a large diffusion depth using nano-diamonds(NDs) was conducted for low carbon steel. Changes of annealed NDs were obtained by Raman spectroscopy and transmission electron microscopy(TEM), and the results suggested that the NDs experience a stripping process before a special solid-reaction with surface iron atoms from steel substrate. Onionlike carbon(OLC) derived from the annealed NDs provided broken graphitic ribbons as carbon sources that accelerated the rate of adsorption and diffusion. Examination of the surface layer at equilibrium using TEM and X-ray photoelectron spectroscopy(XPS) also revealed the special state of carbon, and an ultrafine mixed phase microstructure was obtained by rapid solid-phase transformation. As a result, a surface hardened layer with ultrahigh hardness and a smooth transition region were realized. We believe that these kinds of diamond or graphitic structures with high activity states have an important influence not only on adsorption and diffusion but also on this special solid-phase transformation.展开更多
研究了在 Co/Ti/Si结构中加入非晶 Ge Si层对 Co Si2 /Si异质固相外延的影响 ,用离子束溅射方法在Si衬底上制备 Co/Ge Si/Ti/Si结构多层薄膜 ,通过快速热退火使多层薄膜发生固相反应。采用四探针电阻仪、AES、XRD、RBS等方法进行测试。...研究了在 Co/Ti/Si结构中加入非晶 Ge Si层对 Co Si2 /Si异质固相外延的影响 ,用离子束溅射方法在Si衬底上制备 Co/Ge Si/Ti/Si结构多层薄膜 ,通过快速热退火使多层薄膜发生固相反应。采用四探针电阻仪、AES、XRD、RBS等方法进行测试。实验表明 ,利用 Co/Ge Si/Ti/Si固相反应形成的 Co Si2 薄膜具有良好的外延特性和电学特性 ,Ti中间层和非晶 Ge Si中间层具有促进和改善 Co Si2 外延质量 ,减少衬底耗硅量的作用。Ge原子的存在能够改善外延 Co Si2展开更多
基金the financial support from the National Science Foundation of China(22078190 and 12002196)the National Key Research and Development Program of China(2020YFB1505802)。
文摘Li transient concentration distribution in spherical active material particles can affect the maximum power density and the safe operating regime of the electric vehicles(EVs). On one hand, the quasiexact/exact solution obtained in the time/frequency domain is time-consuming and just as a reference value for approximate solutions;on the other hand, calculation errors and application range of approximate solutions not only rely on approximate algorithms but also on discharge modes. For the purpose to track the transient dynamics for Li solid-phase diffusion in spherical active particles with a tolerable error range and for a wide applicable range, it is necessary to choose optimal approximate algorithms in terms of discharge modes and the nature of active material particles. In this study, approximation methods,such as diffusion length method, polynomial profile approximation method, Padé approximation method,pseudo steady state method, eigenfunction-based Galerkin collocation method, and separation of variables method for solving Li solid-phase diffusion in spherical active particles are compared from calculation fundamentals to algorithm implementation. Furthermore, these approximate solutions are quantitatively compared to the quasi-exact/exact solution in the time/frequency domain under typical discharge modes, i.e., start-up, slow-down, and speed-up. The results obtained from the viewpoint of time-frequency analysis offer a theoretical foundation on how to track Li transient concentration profile in spherical active particles with a high precision and for a wide application range. In turn, optimal solutions of Li solid diffusion equations for spherical active particles can improve the reliability in predicting safe operating regime and estimating maximum power for automotive batteries.
基金supported by the National Natural Science Founda-tion of China(Grant Nos.:52076033 and 51836001).
文摘The dynamic processes and characteristics of solid phase diffusion-bonding of interfacial atoms at high tempera-tures and the effect of that on bonding strength of Ni(111)/)/-Al_(2)O_(3)(0001)interface were investigated through molecular dynamics.It is shown that atomic diffusion occurs at the Ni/Al_(2)O_(3) interface in the temperature range from 698 K to 1,098 K,and proceeds mainly from the Ni side to the ) Al_(2)O_(3) side.The interface was previously reconstructed by solid bonding below the melting temperature,leading to the amorphization of the interface.Be-sides,the intermetallic complexes such as Al_(m)Ni_(n)(e.g.,AlNi_(3)),metal oxide NiO and Ni-Al-O bonds were formed gradually during the diffusion process of atoms.The formation mechanisms of the Ni-Al,Ni-O,and Ni-Al-O bonds are revealed.Based on the reconstructed structure,the adhesion effort at the interface is compared.The higher the temperature,the larger the bond number and the higher the interfacial bonding strength.
基金supported by the National Natural Science Foundation of China (No. 51641109)the National Basic Research Program of China (No. 2014CB046303)the Fundamental Research Funds for the Central Universities of China (Grant No. 2015XKQY01)
文摘In this study, a novel rapid solid carburizing process with a large diffusion depth using nano-diamonds(NDs) was conducted for low carbon steel. Changes of annealed NDs were obtained by Raman spectroscopy and transmission electron microscopy(TEM), and the results suggested that the NDs experience a stripping process before a special solid-reaction with surface iron atoms from steel substrate. Onionlike carbon(OLC) derived from the annealed NDs provided broken graphitic ribbons as carbon sources that accelerated the rate of adsorption and diffusion. Examination of the surface layer at equilibrium using TEM and X-ray photoelectron spectroscopy(XPS) also revealed the special state of carbon, and an ultrafine mixed phase microstructure was obtained by rapid solid-phase transformation. As a result, a surface hardened layer with ultrahigh hardness and a smooth transition region were realized. We believe that these kinds of diamond or graphitic structures with high activity states have an important influence not only on adsorption and diffusion but also on this special solid-phase transformation.
文摘研究了在 Co/Ti/Si结构中加入非晶 Ge Si层对 Co Si2 /Si异质固相外延的影响 ,用离子束溅射方法在Si衬底上制备 Co/Ge Si/Ti/Si结构多层薄膜 ,通过快速热退火使多层薄膜发生固相反应。采用四探针电阻仪、AES、XRD、RBS等方法进行测试。实验表明 ,利用 Co/Ge Si/Ti/Si固相反应形成的 Co Si2 薄膜具有良好的外延特性和电学特性 ,Ti中间层和非晶 Ge Si中间层具有促进和改善 Co Si2 外延质量 ,减少衬底耗硅量的作用。Ge原子的存在能够改善外延 Co Si2