The China Jinping Underground Laboratory(CJPL), which has the lowest cosmic-ray muon flux and the lowest reactor neutrino flux of any laboratory, is ideal to carry out low-energy neutrino experiments. With two detec...The China Jinping Underground Laboratory(CJPL), which has the lowest cosmic-ray muon flux and the lowest reactor neutrino flux of any laboratory, is ideal to carry out low-energy neutrino experiments. With two detectors and a total fiducial mass of 2000 tons for solar neutrino physics(equivalently, 3000 tons for geo-neutrino and supernova neutrino physics), the Jinping neutrino experiment will have the potential to identify the neutrinos from the CNO fusion cycles of the Sun, to cover the transition phase for the solar neutrino oscillation from vacuum to matter mixing, and to measure the geo-neutrino flux, including the Th/U ratio. These goals can be fulfilled with mature existing techniques. Efforts on increasing the target mass with multi-modular neutrino detectors and on developing the slow liquid scintillator will increase the Jinping discovery potential in the study of solar neutrinos,geo-neutrinos, supernova neutrinos, and dark matter.展开更多
A new theoretical prediction that a plasma can produce antineutrinos is used to solve the solar neutrino problem. The difference between electron-positron induced fusion, and inertial fusion experiments that have been...A new theoretical prediction that a plasma can produce antineutrinos is used to solve the solar neutrino problem. The difference between electron-positron induced fusion, and inertial fusion experiments that have been unsuccessful so far as commercial fusion reactors is also discussed.展开更多
The study of natural radioactivity of objects which are able to change their temporal timing feature is presented. It is of interest to compare the latest data on the activity of the Sun and the periodicity of solar n...The study of natural radioactivity of objects which are able to change their temporal timing feature is presented. It is of interest to compare the latest data on the activity of the Sun and the periodicity of solar neutrinos and the temporal characteristics of the radioactive source. That is, to conduct a search for the possible influence of external sources for radioactivity. There are cycles 5 min, 18 min and 53 min found in solar physics. The cycle of 27 days corresponds to the activity of the Sun. During of the solar activeity these temporal pulsations are lost in a strong variation of solar wind (Neugebauer, NASA). The Stanford University scientists (P. Starrek, G. Valter and M. Vitlend) have found the cycle of 28.4 days as pulsations of the solar neutrinos. Neutrinos come from the depths of the Sun and they tell about the frequency of oscillations of solar bowels. It is also seen online: Kostyantynivska L. V. Solar activity. Search experiment is better to have a known but modified experiment. Experiments on monitoring natural radioactivity and the possible influence from the Sun were previously carried out by measuring the variations of the gamma-ray sample of ore from the TransBaikal uranium deposit;the characteristics of the sample are known. The spectrum of temporal variations in the activity of the sample Zabaikalskaya radioactive ore contains peaks which coincide with the period of natural oscillations of the Sun. The capture cross section of the radioactive heavy deformed nucleus in time decay increases in many orders and is able to interact with the stream of solar neutrinos which are modulated by own oscillations of the Sun. The picks of spectrum of long-period oscillations of the Earth exceed its own contain peaks that match the value with an accuracy of 1% 3% with peaks of its own oscillations of the Sun. The mechanism of excitation of these oscillations is similar to the nature of variations in the activity of a radioactive sample of ore. These effects are included in the mechanisms of interacti展开更多
In this paper, much attention is given to lines of minimum and maximum neutrino energies. Tritium chain of the hydrogen cycle in the Sun including reactions of 3He(e-,νe)3H(p,γ)4 is considered. At the distance of 1 ...In this paper, much attention is given to lines of minimum and maximum neutrino energies. Tritium chain of the hydrogen cycle in the Sun including reactions of 3He(e-,νe)3H(p,γ)4 is considered. At the distance of 1 a.u., the flux of tritium neutrinos is equal to 8.1 × 104 cm-2·s-1. It is an order of magnitude higher than the flux of the (hep)-neutrinos. Radial distribution of 3H-neutrinos yield inside the Sun and their energy spectrum which has a form of line at the energy of (2.5 - 3.0) keV are calculated. The flux of thermal tritium neutrinos is accompanied by a very weak flux of antineutrinos (~103 cm-2·year-1) with energy lower than 18.6 keV. These antineutrinos are produced during Urca processes 3He3H. The flux of the neutrinos of maximum possible energy (line 19.8 MeV) produced due to the (heep)-reaction (related to the (hep)-process) is estimated.展开更多
基金Supported by the National Natural Science Foundation of China(11235006,11475093,11135009,11375065,11505301,and11620101004)the Tsinghua University Initiative Scientific Research Program(20121088035,20131089288,and 20151080432)+3 种基金the Key Laboratory of Particle&Radiation Imaging(Tsinghua University)the CAS Center for Excellence in Particle Physics(CCEPP)U.S.National Science Foundation Grant PHY-1404311(Beacom)U.S.Department of Energy under contract DE-AC02-98CH10886(Yeh)
文摘The China Jinping Underground Laboratory(CJPL), which has the lowest cosmic-ray muon flux and the lowest reactor neutrino flux of any laboratory, is ideal to carry out low-energy neutrino experiments. With two detectors and a total fiducial mass of 2000 tons for solar neutrino physics(equivalently, 3000 tons for geo-neutrino and supernova neutrino physics), the Jinping neutrino experiment will have the potential to identify the neutrinos from the CNO fusion cycles of the Sun, to cover the transition phase for the solar neutrino oscillation from vacuum to matter mixing, and to measure the geo-neutrino flux, including the Th/U ratio. These goals can be fulfilled with mature existing techniques. Efforts on increasing the target mass with multi-modular neutrino detectors and on developing the slow liquid scintillator will increase the Jinping discovery potential in the study of solar neutrinos,geo-neutrinos, supernova neutrinos, and dark matter.
文摘A new theoretical prediction that a plasma can produce antineutrinos is used to solve the solar neutrino problem. The difference between electron-positron induced fusion, and inertial fusion experiments that have been unsuccessful so far as commercial fusion reactors is also discussed.
文摘The study of natural radioactivity of objects which are able to change their temporal timing feature is presented. It is of interest to compare the latest data on the activity of the Sun and the periodicity of solar neutrinos and the temporal characteristics of the radioactive source. That is, to conduct a search for the possible influence of external sources for radioactivity. There are cycles 5 min, 18 min and 53 min found in solar physics. The cycle of 27 days corresponds to the activity of the Sun. During of the solar activeity these temporal pulsations are lost in a strong variation of solar wind (Neugebauer, NASA). The Stanford University scientists (P. Starrek, G. Valter and M. Vitlend) have found the cycle of 28.4 days as pulsations of the solar neutrinos. Neutrinos come from the depths of the Sun and they tell about the frequency of oscillations of solar bowels. It is also seen online: Kostyantynivska L. V. Solar activity. Search experiment is better to have a known but modified experiment. Experiments on monitoring natural radioactivity and the possible influence from the Sun were previously carried out by measuring the variations of the gamma-ray sample of ore from the TransBaikal uranium deposit;the characteristics of the sample are known. The spectrum of temporal variations in the activity of the sample Zabaikalskaya radioactive ore contains peaks which coincide with the period of natural oscillations of the Sun. The capture cross section of the radioactive heavy deformed nucleus in time decay increases in many orders and is able to interact with the stream of solar neutrinos which are modulated by own oscillations of the Sun. The picks of spectrum of long-period oscillations of the Earth exceed its own contain peaks that match the value with an accuracy of 1% 3% with peaks of its own oscillations of the Sun. The mechanism of excitation of these oscillations is similar to the nature of variations in the activity of a radioactive sample of ore. These effects are included in the mechanisms of interacti
文摘In this paper, much attention is given to lines of minimum and maximum neutrino energies. Tritium chain of the hydrogen cycle in the Sun including reactions of 3He(e-,νe)3H(p,γ)4 is considered. At the distance of 1 a.u., the flux of tritium neutrinos is equal to 8.1 × 104 cm-2·s-1. It is an order of magnitude higher than the flux of the (hep)-neutrinos. Radial distribution of 3H-neutrinos yield inside the Sun and their energy spectrum which has a form of line at the energy of (2.5 - 3.0) keV are calculated. The flux of thermal tritium neutrinos is accompanied by a very weak flux of antineutrinos (~103 cm-2·year-1) with energy lower than 18.6 keV. These antineutrinos are produced during Urca processes 3He3H. The flux of the neutrinos of maximum possible energy (line 19.8 MeV) produced due to the (heep)-reaction (related to the (hep)-process) is estimated.