The dynamics of jacket supported offshore wind turbine (OWT) in earthquake environment is one of the progressing focuses in the renewable energy field. Soil-structure interaction (SSI) is a fundamental principle t...The dynamics of jacket supported offshore wind turbine (OWT) in earthquake environment is one of the progressing focuses in the renewable energy field. Soil-structure interaction (SSI) is a fundamental principle to analyze stability and safety of the structure. This study focuses on the performance of the multiple tuned mass damper (MTMD) in minimizing the dynamic responses of the structures objected to seismic loads combined with static wind and wave loads. Response surface methodology (RSM) has been applied to design the MTMD parameters. The analyses have been performed under two different boundary conditions: fixed base (without SSI) and flexible base (with SSI). Two vibration modes of the structure have been suppressed by multi-mode vibration control principle in both cases. The effectiveness of the MTMD in reducing the dynamic response of the structure is presented. The dynamic SSI plays an important role in the seismic behavior of the jacket supported OWT, especially resting on the soft soil deposit. Finally, it shows that excluding the SSI effect could be the reason of overestimating the MTMD performance.展开更多
The humic acid(HA) sample obtained from the alluvial soil was characterized by elemental composition, pyrolysis gas chromatography-mass spectrometry(Py-GC-MS) and solid-state 13C nuclear magnetic resonance (13C ...The humic acid(HA) sample obtained from the alluvial soil was characterized by elemental composition, pyrolysis gas chromatography-mass spectrometry(Py-GC-MS) and solid-state 13C nuclear magnetic resonance (13C NMR) spectroscopy. There is high fat content and a few nitrogen-containing functional groups in HA. Py-GC-MS demonstrates the characterization and structural identification of HA. One long list of identified pyrolysis products was proposed for the construction of conceptual model of HA. Solid-state 13C NMR data indicate there are higher values of alkyl-C, O-alkyl-C and aryl-C in HA. The elemental composition, structural carbon distribution and L3C NMR spectroscopy of simulated HA are consistent with those of experimental HA. HyperChem was used to simulate the three-dimensional molecular structure of the monomer, which was optimized by the molecular mechanics of the optimized potential for liquid simulations(OPLS) force field and molecular dynamics simulation to get the stable and balanced conformation. The deprotonation process study depicts that the degree of ionization of HA gets deeper, while the electronegativity of HA and the energy of van der Waals(vdW) increase. Moreover, the 3D structure of humic acid with -4 charges is the most stable. The deprotonation process is an endothermic process.展开更多
基金supported by a grant[MPSS-NH-2015-78]through the DisasterSafety Management Institute funded by Ministry of Public Safety and Security of Korean government
文摘The dynamics of jacket supported offshore wind turbine (OWT) in earthquake environment is one of the progressing focuses in the renewable energy field. Soil-structure interaction (SSI) is a fundamental principle to analyze stability and safety of the structure. This study focuses on the performance of the multiple tuned mass damper (MTMD) in minimizing the dynamic responses of the structures objected to seismic loads combined with static wind and wave loads. Response surface methodology (RSM) has been applied to design the MTMD parameters. The analyses have been performed under two different boundary conditions: fixed base (without SSI) and flexible base (with SSI). Two vibration modes of the structure have been suppressed by multi-mode vibration control principle in both cases. The effectiveness of the MTMD in reducing the dynamic response of the structure is presented. The dynamic SSI plays an important role in the seismic behavior of the jacket supported OWT, especially resting on the soft soil deposit. Finally, it shows that excluding the SSI effect could be the reason of overestimating the MTMD performance.
基金the National Natural Science Foundation of China
文摘The humic acid(HA) sample obtained from the alluvial soil was characterized by elemental composition, pyrolysis gas chromatography-mass spectrometry(Py-GC-MS) and solid-state 13C nuclear magnetic resonance (13C NMR) spectroscopy. There is high fat content and a few nitrogen-containing functional groups in HA. Py-GC-MS demonstrates the characterization and structural identification of HA. One long list of identified pyrolysis products was proposed for the construction of conceptual model of HA. Solid-state 13C NMR data indicate there are higher values of alkyl-C, O-alkyl-C and aryl-C in HA. The elemental composition, structural carbon distribution and L3C NMR spectroscopy of simulated HA are consistent with those of experimental HA. HyperChem was used to simulate the three-dimensional molecular structure of the monomer, which was optimized by the molecular mechanics of the optimized potential for liquid simulations(OPLS) force field and molecular dynamics simulation to get the stable and balanced conformation. The deprotonation process study depicts that the degree of ionization of HA gets deeper, while the electronegativity of HA and the energy of van der Waals(vdW) increase. Moreover, the 3D structure of humic acid with -4 charges is the most stable. The deprotonation process is an endothermic process.