Soft tissue sealing around implants acts as a barrier between the alveolar bone and oral environment,protecting implants from the invasion of bacteria or external stimuli.In this work,magnesium(Mg)and zinc(Zn)are intr...Soft tissue sealing around implants acts as a barrier between the alveolar bone and oral environment,protecting implants from the invasion of bacteria or external stimuli.In this work,magnesium(Mg)and zinc(Zn)are introduced into titanium by plasma immersed ion implantation technology,and their effects on the behaviors of human gingival fibroblasts(HGFs)as well as the underlying mechanisms are investigated.Surface characterization confirms Mg and Zn exist on the surface in metallic and oxidized states.Contact angle test suggests that surface wettability of titanium changes after ion implantation and thus influences protein adsorption of surfaces.In vitro studies disclose that HGFs on Mg ion-implanted samples exhibit better adhesion and migration while cells on Zn ion-implanted samples have higher proliferation rate and amounts.The results of immunofluorescence staining and real-time reverse-transcriptase polymerase chain reaction(RT-PCR)suggest that Mg mainly regulates the motility and adhesion of HGFs through activating the MAPK signal pathway whereas Zn influences HGFs proliferation by triggering the TGF-βsignal pathway.The synergistic effect of Mg and Zn ions ensure that HGFs cultured on co-implanted samples possessed both high proliferation rate and motility,which are critical to soft tissue sealing of implants.展开更多
Following dental implantation,the characteristic bacterial milieu of the oral cavity may lead to peri-implant inflammation,which can negatively impact osseointegration and cause implant failure.To improve soft tissue ...Following dental implantation,the characteristic bacterial milieu of the oral cavity may lead to peri-implant inflammation,which can negatively impact osseointegration and cause implant failure.To improve soft tissue sealing around the implant,enhance osseointegration,and improve implant success rates,this paper proposes a composite multifunctional coating(PHG)prepared using gelatin and polydopamine/hydroxyapatite nanoparticles,investigates the effects of this novel coating on cell adhesion,proliferation,antibacterial activity,osteogenic differentiation,and evaluates its immune-related properties.The PHG coating was proved to have satisfactory hydrophilicity and wettability for cell attachment.Furthermore,it improved the expression of adhesion-related genes and proteins in human gingival fibroblasts,indicating its adhesion-promoting effect.Additionally,bone marrow mesenchymal stem cells exhibited strong osteogenic differentiation potential and mineralization on PHG-coated surfaces.Notably,the PHG coating exhibited antibacterial activity against Streptococcus mutans,as well as anti-inflammatory effects,potentially via the regulation of macrophages.Therefore,the proposed PHG coating may promote soft tissue sealing and bone bonding,providing a potential strategy for the surface modification of dental implants.展开更多
Grasping the boundary of antibacterial function may be better for the sealing of soft tissue around dental implant abutment.Inspired by‘overdone is worse than undone’,we prepared a sandwich-structured dental implant...Grasping the boundary of antibacterial function may be better for the sealing of soft tissue around dental implant abutment.Inspired by‘overdone is worse than undone’,we prepared a sandwich-structured dental implant coating on the percutaneous part using graphene oxide(GO)wrapped under mineralized collagen.Our unique coating structure ensured the high photothermal conversion capability and good photothermal stability of GO.The prepared coating not only achieved suitable inhibition on colonizing bacteria growth of Streptococcus sanguinis,Fusobacterium nucleatum and Porphyromonas gingivalis but also disrupted the wall/membrane permeability of free bacteria.Further enhancements on the antibacterial property were generally observed through the additional incorporation of dimethylaminododecyl methacrylate.Additionally,the coating with sandwich structure significantly enhanced the adhesion,cytoskeleton organization and proliferation of human gingival fibroblasts,which was effective to improve soft tissue sealing.Furthermore,cell viability was preserved when cells and bacteria were cultivated in the same environment by a coculture assay.This was attributed to the sandwich structure and mineralized collagen as the outmost layer,which would protect tissue cells from photothermal therapy and GO,as well as accelerate the recovery of cell activity.Overall,the coating design would provide a useful alternative method for dental implant abutment surface modification and functionalization.展开更多
In this study,we fabricated poly(3-hydroxybutyrate-3-hydroxyvalerate)(PHBV)coatings doped with Gd^(3+)(1,5,and 10×10^(−4) mol/L)on Ti6Al4V alloy for the first time to promote soft tissue sealing around dental imp...In this study,we fabricated poly(3-hydroxybutyrate-3-hydroxyvalerate)(PHBV)coatings doped with Gd^(3+)(1,5,and 10×10^(−4) mol/L)on Ti6Al4V alloy for the first time to promote soft tissue sealing around dental implants.The corrosion resistance of Gd^(3+)-modified PHBV-coated Ti6Al4V was studied by electrochemical and immersion tests,respectively,whereas CCK-8 and RT-PCR evaluated the biocompatibility to human gingival fibroblasts(HGFs)and human umbilical vein endothelial cells(HUVECs).It was found that the Gd^(3+)-modified PHBV coating could enhance the corrosion resistance of Ti6Al4V.In vitro cell tests showed that PHBV coatings with and without Gd^(3+) addition could promote adhesion and proliferation of HGFs and HUVECs,showing a Gd^(3+) content-dependent manner.Moreover,it was found that the PDA-PHBV@1Gd showed the best proliferation to HGFs by up-regulating gene expressions of VINCULIN,ITGB1,and ITGA3,whereas the best response to HUVECs with the highest gene expression of eNOS and HIF-1αgenes was found in the PDA-PHBV@5Gd-coated group.展开更多
基金the National Natural Science Foundation of China(31971259,51831011,31870945)National Natural Science Foundation for Distinguished Young Scholars of China(51525207)+1 种基金Science and Technology Commission of Shanghai Municipality(18410760600,18YF1426900)International Partnership Program of Chinese Academy of Sciences(GJHZ1850)are acknowledged.
文摘Soft tissue sealing around implants acts as a barrier between the alveolar bone and oral environment,protecting implants from the invasion of bacteria or external stimuli.In this work,magnesium(Mg)and zinc(Zn)are introduced into titanium by plasma immersed ion implantation technology,and their effects on the behaviors of human gingival fibroblasts(HGFs)as well as the underlying mechanisms are investigated.Surface characterization confirms Mg and Zn exist on the surface in metallic and oxidized states.Contact angle test suggests that surface wettability of titanium changes after ion implantation and thus influences protein adsorption of surfaces.In vitro studies disclose that HGFs on Mg ion-implanted samples exhibit better adhesion and migration while cells on Zn ion-implanted samples have higher proliferation rate and amounts.The results of immunofluorescence staining and real-time reverse-transcriptase polymerase chain reaction(RT-PCR)suggest that Mg mainly regulates the motility and adhesion of HGFs through activating the MAPK signal pathway whereas Zn influences HGFs proliferation by triggering the TGF-βsignal pathway.The synergistic effect of Mg and Zn ions ensure that HGFs cultured on co-implanted samples possessed both high proliferation rate and motility,which are critical to soft tissue sealing of implants.
基金funded by the National Natural Science Foundation of China(Nos.81801006,31870953,81901048,81620108006,81991505,81921002,81801023,and 82100963)Shanghai Rising-Star Program(21QA1405400)+1 种基金the National Key Research and Development Program of China(No.2016YFC1102900)Innovative Research Team of High-Level Local Universities in Shanghai(No.SSMU-ZDCX20180900)。
文摘Following dental implantation,the characteristic bacterial milieu of the oral cavity may lead to peri-implant inflammation,which can negatively impact osseointegration and cause implant failure.To improve soft tissue sealing around the implant,enhance osseointegration,and improve implant success rates,this paper proposes a composite multifunctional coating(PHG)prepared using gelatin and polydopamine/hydroxyapatite nanoparticles,investigates the effects of this novel coating on cell adhesion,proliferation,antibacterial activity,osteogenic differentiation,and evaluates its immune-related properties.The PHG coating was proved to have satisfactory hydrophilicity and wettability for cell attachment.Furthermore,it improved the expression of adhesion-related genes and proteins in human gingival fibroblasts,indicating its adhesion-promoting effect.Additionally,bone marrow mesenchymal stem cells exhibited strong osteogenic differentiation potential and mineralization on PHG-coated surfaces.Notably,the PHG coating exhibited antibacterial activity against Streptococcus mutans,as well as anti-inflammatory effects,potentially via the regulation of macrophages.Therefore,the proposed PHG coating may promote soft tissue sealing and bone bonding,providing a potential strategy for the surface modification of dental implants.
基金supported by the National Natural Science Foundation of China(NSFC,No.31971265,31971257)the Project in the Science and Technology Support Program of Sichuan Province(No.2021YFSY0010).
文摘Grasping the boundary of antibacterial function may be better for the sealing of soft tissue around dental implant abutment.Inspired by‘overdone is worse than undone’,we prepared a sandwich-structured dental implant coating on the percutaneous part using graphene oxide(GO)wrapped under mineralized collagen.Our unique coating structure ensured the high photothermal conversion capability and good photothermal stability of GO.The prepared coating not only achieved suitable inhibition on colonizing bacteria growth of Streptococcus sanguinis,Fusobacterium nucleatum and Porphyromonas gingivalis but also disrupted the wall/membrane permeability of free bacteria.Further enhancements on the antibacterial property were generally observed through the additional incorporation of dimethylaminododecyl methacrylate.Additionally,the coating with sandwich structure significantly enhanced the adhesion,cytoskeleton organization and proliferation of human gingival fibroblasts,which was effective to improve soft tissue sealing.Furthermore,cell viability was preserved when cells and bacteria were cultivated in the same environment by a coculture assay.This was attributed to the sandwich structure and mineralized collagen as the outmost layer,which would protect tissue cells from photothermal therapy and GO,as well as accelerate the recovery of cell activity.Overall,the coating design would provide a useful alternative method for dental implant abutment surface modification and functionalization.
基金financially supported by the National Natural Science Foundation of China(No.51801198)the Funds of Scientific and Technological Plan of Fujian Province(No.2020Y0083)+3 种基金the National Key Technologies Research and Development Program of China(2016YFC1100502)the Joint Funds of Scientific and Technological Innovation Program of Fujian Province(No.2017Y9059)the Natural Science Foundation of Fujian Province(No.201910027)the Funds of Scientific and Technological Plan of Fujian Province(No.2020L3026)。
文摘In this study,we fabricated poly(3-hydroxybutyrate-3-hydroxyvalerate)(PHBV)coatings doped with Gd^(3+)(1,5,and 10×10^(−4) mol/L)on Ti6Al4V alloy for the first time to promote soft tissue sealing around dental implants.The corrosion resistance of Gd^(3+)-modified PHBV-coated Ti6Al4V was studied by electrochemical and immersion tests,respectively,whereas CCK-8 and RT-PCR evaluated the biocompatibility to human gingival fibroblasts(HGFs)and human umbilical vein endothelial cells(HUVECs).It was found that the Gd^(3+)-modified PHBV coating could enhance the corrosion resistance of Ti6Al4V.In vitro cell tests showed that PHBV coatings with and without Gd^(3+) addition could promote adhesion and proliferation of HGFs and HUVECs,showing a Gd^(3+) content-dependent manner.Moreover,it was found that the PDA-PHBV@1Gd showed the best proliferation to HGFs by up-regulating gene expressions of VINCULIN,ITGB1,and ITGA3,whereas the best response to HUVECs with the highest gene expression of eNOS and HIF-1αgenes was found in the PDA-PHBV@5Gd-coated group.