Wettability alteration of carbonate reservoirs from oil-wet to water-wet is an important method to increase the efficiency of oil recovery. Interaction between surfactants and polymers can enhance the effectiveness of...Wettability alteration of carbonate reservoirs from oil-wet to water-wet is an important method to increase the efficiency of oil recovery. Interaction between surfactants and polymers can enhance the effectiveness of surfactants in EOR applications. In this study, the interaction of polyethylene glycol(PEG) with an ionic surfactant, sodium dodecyl sulphate(SDS),is evaluated on an oil-wet carbonate rock surface by using contact angle measurements. The results reveal that wettability alteration of carbonate rocks is achieved through PEG/SDS interaction on the rock surface above a critical aggregation concentration(CAC). The behaviour of PEG/SDS aqueous solutions is evaluated using surface and interfacial tension measurements. Furthermore, the effect of PEG and SDS concentrations and impact of electrolyte addition on PEG/SDS interaction are investigated. It is shown that electrolyte(NaCl) can effectively decrease the CAC values and accordingly initiate the wettability alteration of rocks. Moreover, in a constant SDS concentration, the addition of NaCl leads to a reduction in the contact angle, which can also be obtained by increasing the aging time, temperature and pre-adsorption of PEG on the rock surface.展开更多
The sonication-driven dispersion of single-walled carbon nanotubes (SWCNTs) in aqueous surfactant solution has been monitored by UV-vis-NIR spectroscopy and scanning electron microscopy. Dispersion of SWCNTs experimen...The sonication-driven dispersion of single-walled carbon nanotubes (SWCNTs) in aqueous surfactant solution has been monitored by UV-vis-NIR spectroscopy and scanning electron microscopy. Dispersion of SWCNTs experiments reveal that the maximum concentration of dispersed SWCNTs corresponds to the maximum UV-vis-NIR absorbance of the solution. With higher surfactant concentration the dispersion rate of SWCNTs increases and low temperature sonication is required to achieve maximum dispersion. Dispersion of higher SWCNT concentrations requires longer sonication time. For effective dispersion the optimal concentration of surfactant is 1.5 wt%, the concentration of SWCNTs that can be homogeneously dispersed in aqueous solution is about 0.4 mg/ml.展开更多
This work investigates the inhibitive properties of sodium dodecyl sulphate (SDS) on the corrosion of copper (Cu) in nitric acid using gasometric methods. The inhibition efficiency increases with time and concentratio...This work investigates the inhibitive properties of sodium dodecyl sulphate (SDS) on the corrosion of copper (Cu) in nitric acid using gasometric methods. The inhibition efficiency increases with time and concentration of SDS. The corrosion rate of copper decreases as concentration of SDS increases. Adsorption of the SDS on the surface obeyed the Langmuir adsorption isotherm. The high negative values of the kinetic parameter B suggest that the inhibitor’s effectiveness increases with temperature. The equilibrium constant and the free energy of adsorption of SDS to copper are negative and large. This observation implies that the adsorption mechanism maybe chemisorption. The quantum chemical calculation of copper dodecyl sulphate shows that the energy change in the HOMO-LUMO energy of the moiety is positive and small. This observation implies that the SDS is an efficient inhibitor. The high dipole moment obtained implies that corrosion inhibition of Cu is enhanced by adsorption of SDS and this observation correlates with the observed experimental inhibition efficiency.展开更多
文摘Wettability alteration of carbonate reservoirs from oil-wet to water-wet is an important method to increase the efficiency of oil recovery. Interaction between surfactants and polymers can enhance the effectiveness of surfactants in EOR applications. In this study, the interaction of polyethylene glycol(PEG) with an ionic surfactant, sodium dodecyl sulphate(SDS),is evaluated on an oil-wet carbonate rock surface by using contact angle measurements. The results reveal that wettability alteration of carbonate rocks is achieved through PEG/SDS interaction on the rock surface above a critical aggregation concentration(CAC). The behaviour of PEG/SDS aqueous solutions is evaluated using surface and interfacial tension measurements. Furthermore, the effect of PEG and SDS concentrations and impact of electrolyte addition on PEG/SDS interaction are investigated. It is shown that electrolyte(NaCl) can effectively decrease the CAC values and accordingly initiate the wettability alteration of rocks. Moreover, in a constant SDS concentration, the addition of NaCl leads to a reduction in the contact angle, which can also be obtained by increasing the aging time, temperature and pre-adsorption of PEG on the rock surface.
文摘The sonication-driven dispersion of single-walled carbon nanotubes (SWCNTs) in aqueous surfactant solution has been monitored by UV-vis-NIR spectroscopy and scanning electron microscopy. Dispersion of SWCNTs experiments reveal that the maximum concentration of dispersed SWCNTs corresponds to the maximum UV-vis-NIR absorbance of the solution. With higher surfactant concentration the dispersion rate of SWCNTs increases and low temperature sonication is required to achieve maximum dispersion. Dispersion of higher SWCNT concentrations requires longer sonication time. For effective dispersion the optimal concentration of surfactant is 1.5 wt%, the concentration of SWCNTs that can be homogeneously dispersed in aqueous solution is about 0.4 mg/ml.
文摘This work investigates the inhibitive properties of sodium dodecyl sulphate (SDS) on the corrosion of copper (Cu) in nitric acid using gasometric methods. The inhibition efficiency increases with time and concentration of SDS. The corrosion rate of copper decreases as concentration of SDS increases. Adsorption of the SDS on the surface obeyed the Langmuir adsorption isotherm. The high negative values of the kinetic parameter B suggest that the inhibitor’s effectiveness increases with temperature. The equilibrium constant and the free energy of adsorption of SDS to copper are negative and large. This observation implies that the adsorption mechanism maybe chemisorption. The quantum chemical calculation of copper dodecyl sulphate shows that the energy change in the HOMO-LUMO energy of the moiety is positive and small. This observation implies that the SDS is an efficient inhibitor. The high dipole moment obtained implies that corrosion inhibition of Cu is enhanced by adsorption of SDS and this observation correlates with the observed experimental inhibition efficiency.