Snow cover is an important water source for vegetation growth in arid and semi-arid areas,and grassland phenology provides valuable information on the response of terrestrial ecosystems to climate change.The Mongolian...Snow cover is an important water source for vegetation growth in arid and semi-arid areas,and grassland phenology provides valuable information on the response of terrestrial ecosystems to climate change.The Mongolian Plateau features both abundant snow cover resources and typical grassland ecosystems.In recent years,with the intensification of global climate change,the snow cover on the Mongolian Plateau has changed correspondingly,with resulting effects on vegetation growth.In this study,using MOD10A1 snow cover data and MOD13A1 Normalized Difference Vegetation Index(NDVI)data combined with remote sensing(RS)and geographic information system(GIS)techniques,we analyzed the spatiotemporal changes in snow cover and grassland phenology on the Mongolian Plateau from 2001 to 2018.The correlation analysis and grey relation analysis were used to determine the influence of snow cover parameters(snow cover fraction(SCF),snow cover duration(SCD),snow cover onset date(SCOD),and snow cover end date(SCED))on different types of grassland vegetation.The results showed wide snow cover areas,an early start time,a late end time,and a long duration of snow cover over the northern Mongolian Plateau.Additionally,a late start,an early end,and a short duration were observed for grassland phenology,but the southern area showed the opposite trend.The SCF decreased at an annual rate of 0.33%.The SCD was shortened at an annual rate of 0.57 d.The SCOD and SCED in more than half of the study area advanced at annual rates of 5.33 and 5.74 DOY(day of year),respectively.For grassland phenology,the start of the growing season(SOS)advanced at an annual rate of 0.03 DOY,the end of the growing season(EOS)was delayed at an annual rate of 0.14 DOY,and the length of the growing season(LOS)was prolonged at an annual rate of 0.17 d.The SCF,SCD,and SCED in the snow season were significantly positively correlated with the SOS and negatively correlated with the EOS and LOS.The SCOD was significantly negatively correlated with the SOS and positively correl展开更多
Based on historical runs,one of the core experiments of the fifth phase of the Coupled Model Intercomparison Project (CMIP5),the snow depth (SD) and snow cover fraction (SCF) simulated by two versions of the Fle...Based on historical runs,one of the core experiments of the fifth phase of the Coupled Model Intercomparison Project (CMIP5),the snow depth (SD) and snow cover fraction (SCF) simulated by two versions of the Flexible Global OceanAtmosphere-Land System (FGOALS) model,Grid-point Version 2 (g2) and Spectral Version 2 (s2),were validated against observational data.The results revealed that the spatial pattern of SD and SCF over the Northern Hemisphere (NH) are simulated well by both models,except over the Tibetan Plateau,with the average spatial correlation coefficient over all months being around 0.7 and 0.8 for SD and SCF,respectively.Although the onset of snow accumulation is captured wellby the two models in terms of the annual cycle of SD and SCF,g2 overestimates SD/SCF over most mid-and high-latitude areas of the NH.Analysis showed that g2 produces lower temperatures than s2 because it considers the indirect effects of aerosols in its atmospheric component,which is the primary driver for the SD/SCF difference between the two models.In addition,both models simulate the significant decreasing trend of SCF well over (30°-70°N) in winter during the period 1971-94.However,as g2 has a weak response to an increase in the concentration of CO2 and lower climate sensitivity,it presents weaker interannual variation compared to s2.展开更多
Assimilation of snow cover is an important method to improve the accuracy of snow simulation. However, the effects of snow assimilation are poor because satellite observed snow cover data contain erroneous information...Assimilation of snow cover is an important method to improve the accuracy of snow simulation. However, the effects of snow assimilation are poor because satellite observed snow cover data contain erroneous information, such as cloud contamination. In this paper, an improved approach is proposed to reduce the effects of observational errors during assimilation of snow cover fraction acquired by the Fengyun-3(FY-3) satellite in northeastern China. A snow depth constraint was imposed on quality control of a snow depth product from a microwave radiation imager. The assimilation experiments were carried out before and after quality control(denoted as SCFDA and SCFDA_WSD, respectively). The snow cover fraction results were evaluated against the Moderate Resolution Imaging Spectroradiometer(MODIS) snow cover products. When assimilating the snow cover fraction with the snow depth constraint(i.e., SCFDA_WSD), substantially larger improvement was obtained than that without such a constraint/quality control(SCFDA), and the deviation and root mean square error of the snow cover fraction were significantly reduced.The assimilation performance was also evaluated against in-situ snow depth observations. The SCFDA_WSD also showed greater improvements during the snow accumulation and snowmelt periods than the SCFDA. The SCFDA_WSD improvements in woodland and shrubland were the most obvious. At different altitudes, the effects of the SCFDA_WSD were basically equivalent, and the deeper the snow depth was, the better the effect. In addition, the SCFDA_WSD method was found in close agreement with the observations during a sudden snowfall event.展开更多
This paper proposes an applicable approach for snow information abstraction in northern Xinjiang Basin using MODIS data. Linear spectral mixture analysis (LSMA) was used to calculate snow cover fractions (SF) with...This paper proposes an applicable approach for snow information abstraction in northern Xinjiang Basin using MODIS data. Linear spectral mixture analysis (LSMA) was used to calculate snow cover fractions (SF) within a pixel, which was used to establish a regression function with NDSI. In addition, 80 snow depths samples were collected in the study region. The correlation between image spectra reflectance and snow depth as well as the comparison between measured snow spectra and image spectra was analyzed. An algorithm was developed for snow depth inversion on the basis of the correlation between snow depth and snow spectra in the region. The results indicated that the model of SF had a high accuracy with the mean absolute error 0.06 tested by 26 true measured values and the validation for snow depth model using another dataset with 50 sampling sites showed an RMSE of 1.63. Our study showed that MODIS data provide an alternative method for snow information abstraction through development of algorithms suitable for local application.展开更多
基金supported by the National Natural Science Foundation of China(41861014)the Natural Science Foundation of Inner Mongolia Autonomous Region,China(2020BS03042,2020BS04009)the Scientific Research Start-up Fund Projects of Introduced Talents(5909001803,1004031904).
文摘Snow cover is an important water source for vegetation growth in arid and semi-arid areas,and grassland phenology provides valuable information on the response of terrestrial ecosystems to climate change.The Mongolian Plateau features both abundant snow cover resources and typical grassland ecosystems.In recent years,with the intensification of global climate change,the snow cover on the Mongolian Plateau has changed correspondingly,with resulting effects on vegetation growth.In this study,using MOD10A1 snow cover data and MOD13A1 Normalized Difference Vegetation Index(NDVI)data combined with remote sensing(RS)and geographic information system(GIS)techniques,we analyzed the spatiotemporal changes in snow cover and grassland phenology on the Mongolian Plateau from 2001 to 2018.The correlation analysis and grey relation analysis were used to determine the influence of snow cover parameters(snow cover fraction(SCF),snow cover duration(SCD),snow cover onset date(SCOD),and snow cover end date(SCED))on different types of grassland vegetation.The results showed wide snow cover areas,an early start time,a late end time,and a long duration of snow cover over the northern Mongolian Plateau.Additionally,a late start,an early end,and a short duration were observed for grassland phenology,but the southern area showed the opposite trend.The SCF decreased at an annual rate of 0.33%.The SCD was shortened at an annual rate of 0.57 d.The SCOD and SCED in more than half of the study area advanced at annual rates of 5.33 and 5.74 DOY(day of year),respectively.For grassland phenology,the start of the growing season(SOS)advanced at an annual rate of 0.03 DOY,the end of the growing season(EOS)was delayed at an annual rate of 0.14 DOY,and the length of the growing season(LOS)was prolonged at an annual rate of 0.17 d.The SCF,SCD,and SCED in the snow season were significantly positively correlated with the SOS and negatively correlated with the EOS and LOS.The SCOD was significantly negatively correlated with the SOS and positively correl
基金supported by the Key Projects in the National Science & Technology Pillar Program during the Twelfth Five-Year Plan Period (Grant No. 2012BAC22B02)the National Key Basic Research Program of China (Grant No. 2013CB956603)the Ministry of Science and Technology of China (Grant No. 2013CBA01805)
文摘Based on historical runs,one of the core experiments of the fifth phase of the Coupled Model Intercomparison Project (CMIP5),the snow depth (SD) and snow cover fraction (SCF) simulated by two versions of the Flexible Global OceanAtmosphere-Land System (FGOALS) model,Grid-point Version 2 (g2) and Spectral Version 2 (s2),were validated against observational data.The results revealed that the spatial pattern of SD and SCF over the Northern Hemisphere (NH) are simulated well by both models,except over the Tibetan Plateau,with the average spatial correlation coefficient over all months being around 0.7 and 0.8 for SD and SCF,respectively.Although the onset of snow accumulation is captured wellby the two models in terms of the annual cycle of SD and SCF,g2 overestimates SD/SCF over most mid-and high-latitude areas of the NH.Analysis showed that g2 produces lower temperatures than s2 because it considers the indirect effects of aerosols in its atmospheric component,which is the primary driver for the SD/SCF difference between the two models.In addition,both models simulate the significant decreasing trend of SCF well over (30°-70°N) in winter during the period 1971-94.However,as g2 has a weak response to an increase in the concentration of CO2 and lower climate sensitivity,it presents weaker interannual variation compared to s2.
基金Supported by the National Natural Science Foundation of China(91437220)National Key Research and Development Program of China(2018YFC1506601)China Meteorological Administration Special Public Welfare Research Fund(GYHY201506002)
文摘Assimilation of snow cover is an important method to improve the accuracy of snow simulation. However, the effects of snow assimilation are poor because satellite observed snow cover data contain erroneous information, such as cloud contamination. In this paper, an improved approach is proposed to reduce the effects of observational errors during assimilation of snow cover fraction acquired by the Fengyun-3(FY-3) satellite in northeastern China. A snow depth constraint was imposed on quality control of a snow depth product from a microwave radiation imager. The assimilation experiments were carried out before and after quality control(denoted as SCFDA and SCFDA_WSD, respectively). The snow cover fraction results were evaluated against the Moderate Resolution Imaging Spectroradiometer(MODIS) snow cover products. When assimilating the snow cover fraction with the snow depth constraint(i.e., SCFDA_WSD), substantially larger improvement was obtained than that without such a constraint/quality control(SCFDA), and the deviation and root mean square error of the snow cover fraction were significantly reduced.The assimilation performance was also evaluated against in-situ snow depth observations. The SCFDA_WSD also showed greater improvements during the snow accumulation and snowmelt periods than the SCFDA. The SCFDA_WSD improvements in woodland and shrubland were the most obvious. At different altitudes, the effects of the SCFDA_WSD were basically equivalent, and the deeper the snow depth was, the better the effect. In addition, the SCFDA_WSD method was found in close agreement with the observations during a sudden snowfall event.
基金supported by the National Natural Science Foundation of China[Grant No.42041004]the“Innovation Star”Project for Outstanding Postgraduates of Gansu Province[Grant No.2022CXZX-107]the Central Universities[Grant No.lzujbky-2019-kb30].
基金Supported by the National Natural Science Foundation of China (No.70361001).
文摘This paper proposes an applicable approach for snow information abstraction in northern Xinjiang Basin using MODIS data. Linear spectral mixture analysis (LSMA) was used to calculate snow cover fractions (SF) within a pixel, which was used to establish a regression function with NDSI. In addition, 80 snow depths samples were collected in the study region. The correlation between image spectra reflectance and snow depth as well as the comparison between measured snow spectra and image spectra was analyzed. An algorithm was developed for snow depth inversion on the basis of the correlation between snow depth and snow spectra in the region. The results indicated that the model of SF had a high accuracy with the mean absolute error 0.06 tested by 26 true measured values and the validation for snow depth model using another dataset with 50 sampling sites showed an RMSE of 1.63. Our study showed that MODIS data provide an alternative method for snow information abstraction through development of algorithms suitable for local application.