This work investigates adaptive stiffness control and motion optimization of a snake-like robot with variable stiffness actuators. The robot can vary its stiffness by controlling magnetorheological fluid(MRF) around a...This work investigates adaptive stiffness control and motion optimization of a snake-like robot with variable stiffness actuators. The robot can vary its stiffness by controlling magnetorheological fluid(MRF) around actuators. In order to improve the robot's physical stability in complex environments, this work proposes an adaptive stiffness control strategy. This strategy is also useful for the robot to avoid disturbing caused by emergency situations such as collisions. In addition, to obtain optimal stiffness and reduce energy consumption, both torques of actuators and stiffness of the MRF braker are considered and optimized by using an evolutionary optimization algorithm. Simulations and experiments are conducted to verify the proposed adaptive stiffness control and optimization methods for a variable stiffness snake-like robots.展开更多
In this paper, a dynamic model for an underwater snake-like robot is developed based on Kane's dynamic equations. This methodology allows construction of the dynamic model simply and incrementally. The partial vel...In this paper, a dynamic model for an underwater snake-like robot is developed based on Kane's dynamic equations. This methodology allows construction of the dynamic model simply and incrementally. The partial velocity is deduced. The forces which contribute to dynamics are determined by Kane's approach. The generalized active forces and the generalized inertia forces are deduced. The model developed in this paper includes inertia force, inertia moment, gravity, control torques, and three major hydrodynamic forces: added mass, profile drag and buoyancy. The equations of hydrodynamic forces are deduced. Kane's method provides a direct approach for incorporating external environmental forces into the model. The dynamic model developed in this paper is obtained in a closed form which is well suited for control purposes. It is also computationally efficient and has physical insight into what forces really influence the system dynamics. The simulation result shows that the proposed method is feasible.展开更多
A systematic method for swimming control of the underwater snake-like robot is still lacking. We construct a simulation platform of the underwater snake-like robot swimming based on Kane's dynamic model and centra...A systematic method for swimming control of the underwater snake-like robot is still lacking. We construct a simulation platform of the underwater snake-like robot swimming based on Kane's dynamic model and central pattern generator(CPG). The partial velocity is deduced. The forces which contribute to dynamics are determined by Kane's approach. Hydrodynamic coefficients are determined by experiments. Then, we design a CPG-based control architecture implemented as the system of coupled nonlinear oscillators. The CPG, like its biological counterpart, can produce coordinated patterns of rhythmic activity while being modulated by simple control parameters. The relations between the CPG parameters and the speed of the underwater snake-like robot swimming are investigated. Swimming in a straight line, turning, and switching between swimming modes are implemented in our simulation platform to prove the feasibility of the proposed simulation platform. The results show that the simulation platform can imitate different swimming modes of the underwater snake-like robot.展开更多
With slim and legless body, particular ball articulation, and rhythmic locomotion, a nature snake adapted itself to many terrains under the control of a neuron system. Based on analyzing the locomotion mechanism, the ...With slim and legless body, particular ball articulation, and rhythmic locomotion, a nature snake adapted itself to many terrains under the control of a neuron system. Based on analyzing the locomotion mechanism, the main functional features of the motor system in snakes are specified in detail. Furthermore, a bidirectional cyclic inhibitory (BCl) CPG model is applied for the first time to imitate the pattern generation for the locomotion control of the snake-like robot, and its characteristics are discussed, particularly for the generation of three kinds of rhythmic locomotion. Moreover, we introduce the neuron network organized by the BCI-CPGs connected in line with unilateral excitation to switch automatically locomotion pattern of a snake-like robot under different commands from the higher level control neuron and present a necessary condition for the CPG neuron network to sustain a rhythmic output. The validity for the generation of different kinds of rhythmic locomotion modes by the CPG network are verified by the dynamic simulations and experiments. This research provided a new method to model the generation mechanism of the rhythmic pattern of the snake.展开更多
The traditionally articulated manipulator had a single control method,and the limited motion trajectory space was unsuitable for working in an unstructured environment.This paper introduces a control method and optimi...The traditionally articulated manipulator had a single control method,and the limited motion trajectory space was unsuitable for working in an unstructured environment.This paper introduces a control method and optimization for a multijoint manipulator Inspired by snakes'curling and stretching motions.First,we analyze the manipulator’s connection mode and motion planning and propose a new motion method.In addition,we calculated the relevant positions and angles and subdivided the motion of some joints based on the principle of the meta-heuristic algorithm.Ultimately,the manipulator in this mode has a larger workspace and more flexible motion trajectories.The experimental results are consistent with the theoretical analysis,which further proves the feasibility and scalability of the scheme.展开更多
Hydrodynamic force is an important factor that affects the performance of underwater vehicle.Adapting to the current underwater environment by changing its shape is an important feature of underwater snake-like robots...Hydrodynamic force is an important factor that affects the performance of underwater vehicle.Adapting to the current underwater environment by changing its shape is an important feature of underwater snake-like robots(USLR).An experiment was implemented to verify the swimming along the straight line of USLR.A simulation platform is also established for the analysis of the swimming of USLR.To figure out adaptive swimming of USLR to different underwater environments,the relationships between CPG parameters and maximum swimming speed have been discussed,and the switching between different swimming modes has been implemented.展开更多
In order to solve oscillation of head of the underwater snake-like robot,the Central Pattern Generator( CPG)-based control scheme with head-controller was presented. The Kane dynamic model was constructed to be proces...In order to solve oscillation of head of the underwater snake-like robot,the Central Pattern Generator( CPG)-based control scheme with head-controller was presented. The Kane dynamic model was constructed to be processed with a commercial package MotionGenesis Kane 5. 3,to which the proposed control scheme was applied. The relation between CPG parameters and orientation offset of head was investigated. The target orientation of head-controller was calculated through a convenient method. The advantage of this control scheme is that the head of the underwater snake-like robot remains in the forward direction during swimming. To prove the feasibility of the proposed methodology,two basic motion patterns,swimming along the straight line and swimming along the curved path,had been implemented in our simulation platform. The results showed that the simulation platform can imitate the swimming of the underwater snake-like robot and the head of the underwater snake-like robot remains in a fixed orientation directed towards the target. The oscillation of head's orientation is inhibited effectively.展开更多
Inspired by the morphology characteristics and the locomotion mechanisms of the earthworm,and the snakes’morphology characteristics and motivated by the demands for multi-modal locomotion robots in variable working e...Inspired by the morphology characteristics and the locomotion mechanisms of the earthworm,and the snakes’morphology characteristics and motivated by the demands for multi-modal locomotion robots in variable working environments,this paper presents a novel bi-modal robot named as Snake-Worm Locomotion Robot(SWL-Robot).Two fundamentally different locomotion mechanisms,the earthworm’s peristaltic rectilinear locomotion and the snake’s lateral undulation,are synthesized in the SWL-Robot design.In detail,the SWL-Robot consists of six earthworm-like body segments interconnected by rotational joints and a head segment equipped with a couple of independently driven wheels.By actuating the segments following a peristaltic wave-like gait,the robot as a whole could perform earthworm-like rectilinear crawling.The robot could also perform snake-like undulatory locomotion driven by differential motions of the wheels at the head segment.To understand the relationship between the design parameters and the robotic locomotion performance,kinematic models of the SWL-Robot corresponding to the two locomotion modes are developed.Rich locomotion behaviors of the SWL-Robot are achieved,including the peristaltic locomotion inside a tube,multiple planar motions on a flat surface,and a hybrid motion that switches between the tube and the flat surface.It shows that the measured trajectories of the SWL-Robot agree well with the theoretical predictions.The SWL-Robot is promising to be implemented in tasks where both tubular and flat environments may be encountered.展开更多
In prior research,the orientation of head of the snake-like robot is changed according to the sinusoidal wave. To solve this problem,we propose Central Pattern Generator( CPG)-based control scheme with head-controller...In prior research,the orientation of head of the snake-like robot is changed according to the sinusoidal wave. To solve this problem,we propose Central Pattern Generator( CPG)-based control scheme with head-controller to stabilize the head of the underwater snake-like robot. The advantage of the CPG-based control scheme with head-controller is that the head of the underwater snake-like robot is direct to the target orientation during swimming. The relation between CPG parameters and orientation stability of head is discussed.The adaptation of the proposed method to environment changes is tested. The influences of CPG parameters and hydrodynamic forces on the orientation offset of head are investigated. The target orientation( the input of headcontroller) with an experimental optimization is calculated through a convenient method. To prove the feasibility of the proposed methodology,the different swimming modes have been implemented in our simulation platform.The results show that the oscillation of head's orientation is inhibited effectively,and the proposed method has strong adaptation to environment and CPG parameters changes.展开更多
A MNSM( mirror neuron system mechanism)-based controller is developed to present the swimming rhythm of a snake-like robot in Cartesian space. From engineering viewpoint,the proposed controller is composed of a neuron...A MNSM( mirror neuron system mechanism)-based controller is developed to present the swimming rhythm of a snake-like robot in Cartesian space. From engineering viewpoint,the proposed controller is composed of a neuron for rhythm angle and two neurons for motion knowledge in XY plane. The given knowledge is a rhythm curve for swimming motion of a snake-like robot. Experimental results show that the proposed controller can present the knowledge of swimming rhythm,which represents the corresponding control law to drive the snake-like robot to swim with different speeds and turning motion. This work provides a novel method to present the knowledge for swimming motion of snake-like robots.展开更多
The structure and motion principle of a hinged synchronous universal joint (HSUJ) is introduced, also whose kinematics is theoretically analyzed. As a result, a few kinematic characters of the HSUJ are obtained,which ...The structure and motion principle of a hinged synchronous universal joint (HSUJ) is introduced, also whose kinematics is theoretically analyzed. As a result, a few kinematic characters of the HSUJ are obtained,which establish the foundation of its application for snake-like manipulator. Making use of the HSUJ ss actuating mechauism, the developed snake-like manipulator has the merits of small curve radius, fewer actuator, and small volume etc.展开更多
As a hyper-redundant robot, a 3D snake-like robot can perform many other configurations and types of locomotion adapted to environment except for mimicking the natural snake locomotion. The natural snake locomotion us...As a hyper-redundant robot, a 3D snake-like robot can perform many other configurations and types of locomotion adapted to environment except for mimicking the natural snake locomotion. The natural snake locomotion usually limits locomotion capability of the robot because of inadequacy in the mechanism and actuation to imitate characters of natural snake such as the too many DOFs and the characteristics of the muscle. In order to apply snake-like robots to the unstructured environment, the researchers have designed many gaits for increasing the adaptability to a variety of surroundings. The twist-related locomotion is an effective gait achieved by jointly driving the pitching-DOF and yawing-DOF, with which the snakelike robot can move on rough ground and even climb up some obstacles. In dfis paper, the twist-related locomotion function is firstly solved, and simplified to be expressible by sine or cosine function. The 2D locomotion such as V-shape and U-shape is achieved. Also by applying it to the serpentine locomotion or other types of locomotion, the snake-like robot can complete composite locomotion that combines the serpentine locomotion or others with twist-related locomotion. Then we extend the twist-related locomotion to 3D space. Finally, the experimental results are presented to validate all above analyses.展开更多
基金supported by the National Natural Science Foundation of China(51575034)Beijing Leading Talents Program(Z191100006119031)+2 种基金Beijing Municipal Natural Science Foundation(3202022)National Key Research and Development Program of China(2018YFB1304600)the State Key Laboratory of Robotics of China(2018-O15)。
文摘This work investigates adaptive stiffness control and motion optimization of a snake-like robot with variable stiffness actuators. The robot can vary its stiffness by controlling magnetorheological fluid(MRF) around actuators. In order to improve the robot's physical stability in complex environments, this work proposes an adaptive stiffness control strategy. This strategy is also useful for the robot to avoid disturbing caused by emergency situations such as collisions. In addition, to obtain optimal stiffness and reduce energy consumption, both torques of actuators and stiffness of the MRF braker are considered and optimized by using an evolutionary optimization algorithm. Simulations and experiments are conducted to verify the proposed adaptive stiffness control and optimization methods for a variable stiffness snake-like robots.
基金the National Natural Science Foundation of China(No.51009091)the Special ResearchFund for the Doctoral Program of Higher Education ofChina(No.20100073120016)
文摘In this paper, a dynamic model for an underwater snake-like robot is developed based on Kane's dynamic equations. This methodology allows construction of the dynamic model simply and incrementally. The partial velocity is deduced. The forces which contribute to dynamics are determined by Kane's approach. The generalized active forces and the generalized inertia forces are deduced. The model developed in this paper includes inertia force, inertia moment, gravity, control torques, and three major hydrodynamic forces: added mass, profile drag and buoyancy. The equations of hydrodynamic forces are deduced. Kane's method provides a direct approach for incorporating external environmental forces into the model. The dynamic model developed in this paper is obtained in a closed form which is well suited for control purposes. It is also computationally efficient and has physical insight into what forces really influence the system dynamics. The simulation result shows that the proposed method is feasible.
基金the National Natural Science Foundation of China(No.51009091)the Special Research Fund for the Doctoral Program of Higher Education of China(No.20100073120016)
文摘A systematic method for swimming control of the underwater snake-like robot is still lacking. We construct a simulation platform of the underwater snake-like robot swimming based on Kane's dynamic model and central pattern generator(CPG). The partial velocity is deduced. The forces which contribute to dynamics are determined by Kane's approach. Hydrodynamic coefficients are determined by experiments. Then, we design a CPG-based control architecture implemented as the system of coupled nonlinear oscillators. The CPG, like its biological counterpart, can produce coordinated patterns of rhythmic activity while being modulated by simple control parameters. The relations between the CPG parameters and the speed of the underwater snake-like robot swimming are investigated. Swimming in a straight line, turning, and switching between swimming modes are implemented in our simulation platform to prove the feasibility of the proposed simulation platform. The results show that the simulation platform can imitate different swimming modes of the underwater snake-like robot.
基金Supported in part by the National Natural Science Foundation of China (Grant No. 60375029)the National Hi-tech Research and Development Plan (Grant No. 2001AA422360)the Japan Society for the Promotion of Science Grants-in-Aid (Grant No. 15360129)
文摘With slim and legless body, particular ball articulation, and rhythmic locomotion, a nature snake adapted itself to many terrains under the control of a neuron system. Based on analyzing the locomotion mechanism, the main functional features of the motor system in snakes are specified in detail. Furthermore, a bidirectional cyclic inhibitory (BCl) CPG model is applied for the first time to imitate the pattern generation for the locomotion control of the snake-like robot, and its characteristics are discussed, particularly for the generation of three kinds of rhythmic locomotion. Moreover, we introduce the neuron network organized by the BCI-CPGs connected in line with unilateral excitation to switch automatically locomotion pattern of a snake-like robot under different commands from the higher level control neuron and present a necessary condition for the CPG neuron network to sustain a rhythmic output. The validity for the generation of different kinds of rhythmic locomotion modes by the CPG network are verified by the dynamic simulations and experiments. This research provided a new method to model the generation mechanism of the rhythmic pattern of the snake.
基金funded by the National Natural Science Foundation of China under Grant 51875531“Pioneer”and“Leading Goose”R&D Program of Zhejiang under Grant 2022C02057.
文摘The traditionally articulated manipulator had a single control method,and the limited motion trajectory space was unsuitable for working in an unstructured environment.This paper introduces a control method and optimization for a multijoint manipulator Inspired by snakes'curling and stretching motions.First,we analyze the manipulator’s connection mode and motion planning and propose a new motion method.In addition,we calculated the relevant positions and angles and subdivided the motion of some joints based on the principle of the meta-heuristic algorithm.Ultimately,the manipulator in this mode has a larger workspace and more flexible motion trajectories.The experimental results are consistent with the theoretical analysis,which further proves the feasibility and scalability of the scheme.
文摘Hydrodynamic force is an important factor that affects the performance of underwater vehicle.Adapting to the current underwater environment by changing its shape is an important feature of underwater snake-like robots(USLR).An experiment was implemented to verify the swimming along the straight line of USLR.A simulation platform is also established for the analysis of the swimming of USLR.To figure out adaptive swimming of USLR to different underwater environments,the relationships between CPG parameters and maximum swimming speed have been discussed,and the switching between different swimming modes has been implemented.
基金Sponsored by the National Nature Science Foundation of China(Grant No.51009091)the Special Research Fund for the Doctoral Program of Higher Education(Grant No.20100073120016)
文摘In order to solve oscillation of head of the underwater snake-like robot,the Central Pattern Generator( CPG)-based control scheme with head-controller was presented. The Kane dynamic model was constructed to be processed with a commercial package MotionGenesis Kane 5. 3,to which the proposed control scheme was applied. The relation between CPG parameters and orientation offset of head was investigated. The target orientation of head-controller was calculated through a convenient method. The advantage of this control scheme is that the head of the underwater snake-like robot remains in the forward direction during swimming. To prove the feasibility of the proposed methodology,two basic motion patterns,swimming along the straight line and swimming along the curved path,had been implemented in our simulation platform. The results showed that the simulation platform can imitate the swimming of the underwater snake-like robot and the head of the underwater snake-like robot remains in a fixed orientation directed towards the target. The oscillation of head's orientation is inhibited effectively.
基金This research is supported by the National Natural Science Foundation of China under Grant no.11932015the Major Research Plan of the National Natural Science Foundation of China under Grant no.91748203.
文摘Inspired by the morphology characteristics and the locomotion mechanisms of the earthworm,and the snakes’morphology characteristics and motivated by the demands for multi-modal locomotion robots in variable working environments,this paper presents a novel bi-modal robot named as Snake-Worm Locomotion Robot(SWL-Robot).Two fundamentally different locomotion mechanisms,the earthworm’s peristaltic rectilinear locomotion and the snake’s lateral undulation,are synthesized in the SWL-Robot design.In detail,the SWL-Robot consists of six earthworm-like body segments interconnected by rotational joints and a head segment equipped with a couple of independently driven wheels.By actuating the segments following a peristaltic wave-like gait,the robot as a whole could perform earthworm-like rectilinear crawling.The robot could also perform snake-like undulatory locomotion driven by differential motions of the wheels at the head segment.To understand the relationship between the design parameters and the robotic locomotion performance,kinematic models of the SWL-Robot corresponding to the two locomotion modes are developed.Rich locomotion behaviors of the SWL-Robot are achieved,including the peristaltic locomotion inside a tube,multiple planar motions on a flat surface,and a hybrid motion that switches between the tube and the flat surface.It shows that the measured trajectories of the SWL-Robot agree well with the theoretical predictions.The SWL-Robot is promising to be implemented in tasks where both tubular and flat environments may be encountered.
基金Sponsored by the National Nature Science Foundation of China(Grant No.51009091)the Special Research Fund for the Doctoral Program of Higher Education(Grant No.20100073120016)
文摘In prior research,the orientation of head of the snake-like robot is changed according to the sinusoidal wave. To solve this problem,we propose Central Pattern Generator( CPG)-based control scheme with head-controller to stabilize the head of the underwater snake-like robot. The advantage of the CPG-based control scheme with head-controller is that the head of the underwater snake-like robot is direct to the target orientation during swimming. The relation between CPG parameters and orientation stability of head is discussed.The adaptation of the proposed method to environment changes is tested. The influences of CPG parameters and hydrodynamic forces on the orientation offset of head are investigated. The target orientation( the input of headcontroller) with an experimental optimization is calculated through a convenient method. To prove the feasibility of the proposed methodology,the different swimming modes have been implemented in our simulation platform.The results show that the oscillation of head's orientation is inhibited effectively,and the proposed method has strong adaptation to environment and CPG parameters changes.
基金Supported by the National Natural Science Foundation of China(No.61333016)
文摘A MNSM( mirror neuron system mechanism)-based controller is developed to present the swimming rhythm of a snake-like robot in Cartesian space. From engineering viewpoint,the proposed controller is composed of a neuron for rhythm angle and two neurons for motion knowledge in XY plane. The given knowledge is a rhythm curve for swimming motion of a snake-like robot. Experimental results show that the proposed controller can present the knowledge of swimming rhythm,which represents the corresponding control law to drive the snake-like robot to swim with different speeds and turning motion. This work provides a novel method to present the knowledge for swimming motion of snake-like robots.
基金Robotics LaboratoryChinese Academy of Sciences foundation(RL200105)+1 种基金Shanghai Civic Department of ScienceTechnology(985511057)
文摘The structure and motion principle of a hinged synchronous universal joint (HSUJ) is introduced, also whose kinematics is theoretically analyzed. As a result, a few kinematic characters of the HSUJ are obtained,which establish the foundation of its application for snake-like manipulator. Making use of the HSUJ ss actuating mechauism, the developed snake-like manipulator has the merits of small curve radius, fewer actuator, and small volume etc.
文摘As a hyper-redundant robot, a 3D snake-like robot can perform many other configurations and types of locomotion adapted to environment except for mimicking the natural snake locomotion. The natural snake locomotion usually limits locomotion capability of the robot because of inadequacy in the mechanism and actuation to imitate characters of natural snake such as the too many DOFs and the characteristics of the muscle. In order to apply snake-like robots to the unstructured environment, the researchers have designed many gaits for increasing the adaptability to a variety of surroundings. The twist-related locomotion is an effective gait achieved by jointly driving the pitching-DOF and yawing-DOF, with which the snakelike robot can move on rough ground and even climb up some obstacles. In dfis paper, the twist-related locomotion function is firstly solved, and simplified to be expressible by sine or cosine function. The 2D locomotion such as V-shape and U-shape is achieved. Also by applying it to the serpentine locomotion or other types of locomotion, the snake-like robot can complete composite locomotion that combines the serpentine locomotion or others with twist-related locomotion. Then we extend the twist-related locomotion to 3D space. Finally, the experimental results are presented to validate all above analyses.