The existence of loose landslides not only poses a huge safety hazard to the construction of tunnel entrances, but also significantly increases the difficulty of site construction. In this paper, we investigate the co...The existence of loose landslides not only poses a huge safety hazard to the construction of tunnel entrances, but also significantly increases the difficulty of site construction. In this paper, we investigate the comprehensive slope reinforcement management technology for tunnel entrances in thick landslide strata, using the finite element analysis software ABAQUS to study the slope safety coefficients, displacements and plastic zone changes under different management conditions, propose a design structure for slope stability enhancement in thick landslide strata, and analyse the effect of the application of slope stability enhancement measures for thick landslide strata. The results show that the enhanced design structure is used to enhance slope stability. The results show that after the landslide treatment with the enhanced design structure, the slope safety factor was increased from 0.961 to 1.512, the maximum horizontal tangential displacement was reduced from 330.2 mm to 32.74 mm, and the area of plastic zone was significantly reduced, and the landslide support effect was remarkable.展开更多
文摘The existence of loose landslides not only poses a huge safety hazard to the construction of tunnel entrances, but also significantly increases the difficulty of site construction. In this paper, we investigate the comprehensive slope reinforcement management technology for tunnel entrances in thick landslide strata, using the finite element analysis software ABAQUS to study the slope safety coefficients, displacements and plastic zone changes under different management conditions, propose a design structure for slope stability enhancement in thick landslide strata, and analyse the effect of the application of slope stability enhancement measures for thick landslide strata. The results show that the enhanced design structure is used to enhance slope stability. The results show that after the landslide treatment with the enhanced design structure, the slope safety factor was increased from 0.961 to 1.512, the maximum horizontal tangential displacement was reduced from 330.2 mm to 32.74 mm, and the area of plastic zone was significantly reduced, and the landslide support effect was remarkable.