This paper focuses on the leader-following consensus control problem for nonlinear multiagent systems subject to deferred asymmetric time-varying state constraints.A distributed eventtriggered adaptive neural control ...This paper focuses on the leader-following consensus control problem for nonlinear multiagent systems subject to deferred asymmetric time-varying state constraints.A distributed eventtriggered adaptive neural control approach is advanced.By virtue of a distributed sliding-mode estimator,the leader-following consensus control problem is converted into multiple simplified tracking control problems.Afterwards,a shifting function is utilized to transform the error variables such that the initial tracking condition can be totally unknown and the state constraints can be imposed at a specified time instant.Meanwhile,the deferred asymmetric time-varying full state constraints are addressed by a class of asymmetric barrier Lyapunov function.In order to reduce the burden of communication,a relative threshold event-triggered mechanism is incorporated into controller and Zeno behavior is excluded.Based on Lyapunov stability theorem,all closed-loop signals are proved to be semi-globally uniformly ultimately bounded.Finally,a practical simulation example is given to verify the presented control scheme.展开更多
基金partially supported by the China Postdoctoral Science Foundation under Grant Nos.2019M662813,2020M682614 and 2020T130124the Guangdong Basic and Applied Basic Research Foundation under Grant No.2020A1515110974+2 种基金the Local Innovative and Research Teams Project of Guangdong Special Support Program under Grant No.2019BT02X353the Innovative Research Team Program of Guangdong Province Science Foundation under Grant No.2018B030312006the Science and Technology Program of Guangzhou under Grant No.201904020006。
文摘This paper focuses on the leader-following consensus control problem for nonlinear multiagent systems subject to deferred asymmetric time-varying state constraints.A distributed eventtriggered adaptive neural control approach is advanced.By virtue of a distributed sliding-mode estimator,the leader-following consensus control problem is converted into multiple simplified tracking control problems.Afterwards,a shifting function is utilized to transform the error variables such that the initial tracking condition can be totally unknown and the state constraints can be imposed at a specified time instant.Meanwhile,the deferred asymmetric time-varying full state constraints are addressed by a class of asymmetric barrier Lyapunov function.In order to reduce the burden of communication,a relative threshold event-triggered mechanism is incorporated into controller and Zeno behavior is excluded.Based on Lyapunov stability theorem,all closed-loop signals are proved to be semi-globally uniformly ultimately bounded.Finally,a practical simulation example is given to verify the presented control scheme.