To extract the valuable elements from the steel slag, a novel approach has been proposed by modification treatment to provide the stronger driving forces and accelerate the reduction. Three types of dephosphorization ...To extract the valuable elements from the steel slag, a novel approach has been proposed by modification treatment to provide the stronger driving forces and accelerate the reduction. Three types of dephosphorization steel slags were reduced using carbon-saturated iron bath to extract iron and phosphorus simultaneously. During the process of reduction, slag composition, temperature, and original P2O5 content were investigated respectively. Slag modification treatment, adding either silica or alumina to vary the slag composition, was proven to accelerate the reduction of dephosphorization slag. The equilibrium time can be shortened from 60 to 30 min. Slag modification also allowed the reduction reaction to occur at lower temperature. After slag modification, the original P2O5 content in slag presents a slight difference on reduction process. Almost half of the reduced phosphorus was vaporized within 5 and 20 min. As more and more FeO was reduced, CO gas generation decreased, and evaporation amount of phosphorus therefore decreases.展开更多
The feasibility of reducing Cr(VI)from the aqueous solution by sulfuric acid-modified titanium-bearing blast furnace slag(SATBBFS)as a photocatalyst was investigated.The photocatalysts were examined by X-ray diffracti...The feasibility of reducing Cr(VI)from the aqueous solution by sulfuric acid-modified titanium-bearing blast furnace slag(SATBBFS)as a photocatalyst was investigated.The photocatalysts were examined by X-ray diffraction(XRD),UV-vis diffuse reflectance spectra,thermogravimetric analysis(TG)and Fourier transform infrared spectroscopy(FTIR).The photocatalytic activities of the different catalysts were evaluated by the photocatalytic reduction of Cr(VI)under UV-vis light irradiation.The results show that the photocatalytic activities of SATBBFS catalysts are strongly dependent on CaTiO3-to-TiO2 mass ratio,adsorption capacity and surface acidity,and SATBBFS calcined at 400°C shows a higher photocatalytic activity compared with other catalysts.展开更多
In order to utilize slag discarded by nickel plants, the selective recovery of nickel and copper versus iron was investigated by selective reduction, which was achieved by controlling the reduction parameters and magn...In order to utilize slag discarded by nickel plants, the selective recovery of nickel and copper versus iron was investigated by selective reduction, which was achieved by controlling the reduction parameters and magnetic separation process on bench scale. The results show that increasing the basicity (mass ratio of CaO to SIO2) of nickel slag facilitates the enrichment of nickel and copper The process parameters for selective reduction were optimized as follows: basicity of 0.15, reducing at 1200 ~C for 20 min, 5% coal on a dried slag mass base. The grinding-magnetic separation results of reduced briquettes show that concentrate containing 3.25%Ni, 1.20%Cu and 75.26%Fe is obtained and selective enrichment is achieved with a recovery of 82.20%, 80.00% for nickel and copper respectively, while the recovery of iron is only 42.17%. The S and P contents are not reduced obviously and further research may be needed to examine the behaviors of S and P in the process.展开更多
基金Item Sponsored by National Natural Science Foundation of China(50904017)Fundamental Research Funds for Central Universities of China(100402016)Postdoctoral Science Foundation of China(2011M500823)
文摘To extract the valuable elements from the steel slag, a novel approach has been proposed by modification treatment to provide the stronger driving forces and accelerate the reduction. Three types of dephosphorization steel slags were reduced using carbon-saturated iron bath to extract iron and phosphorus simultaneously. During the process of reduction, slag composition, temperature, and original P2O5 content were investigated respectively. Slag modification treatment, adding either silica or alumina to vary the slag composition, was proven to accelerate the reduction of dephosphorization slag. The equilibrium time can be shortened from 60 to 30 min. Slag modification also allowed the reduction reaction to occur at lower temperature. After slag modification, the original P2O5 content in slag presents a slight difference on reduction process. Almost half of the reduced phosphorus was vaporized within 5 and 20 min. As more and more FeO was reduced, CO gas generation decreased, and evaporation amount of phosphorus therefore decreases.
基金Project(N090423003)supported by the Basic Scientific Research Costs of Central Colleges of ChinaProject(2007CB613504)supported by the National Basic Research Program of ChinaProject(307009)supported by the Foundation for Key Program of Ministry of Education,China
文摘The feasibility of reducing Cr(VI)from the aqueous solution by sulfuric acid-modified titanium-bearing blast furnace slag(SATBBFS)as a photocatalyst was investigated.The photocatalysts were examined by X-ray diffraction(XRD),UV-vis diffuse reflectance spectra,thermogravimetric analysis(TG)and Fourier transform infrared spectroscopy(FTIR).The photocatalytic activities of the different catalysts were evaluated by the photocatalytic reduction of Cr(VI)under UV-vis light irradiation.The results show that the photocatalytic activities of SATBBFS catalysts are strongly dependent on CaTiO3-to-TiO2 mass ratio,adsorption capacity and surface acidity,and SATBBFS calcined at 400°C shows a higher photocatalytic activity compared with other catalysts.
基金Project([2009]606)supported by the National Development and Reform Commission of ChinaProject(50974135)supported by the National Natural Science Foundation of China
文摘In order to utilize slag discarded by nickel plants, the selective recovery of nickel and copper versus iron was investigated by selective reduction, which was achieved by controlling the reduction parameters and magnetic separation process on bench scale. The results show that increasing the basicity (mass ratio of CaO to SIO2) of nickel slag facilitates the enrichment of nickel and copper The process parameters for selective reduction were optimized as follows: basicity of 0.15, reducing at 1200 ~C for 20 min, 5% coal on a dried slag mass base. The grinding-magnetic separation results of reduced briquettes show that concentrate containing 3.25%Ni, 1.20%Cu and 75.26%Fe is obtained and selective enrichment is achieved with a recovery of 82.20%, 80.00% for nickel and copper respectively, while the recovery of iron is only 42.17%. The S and P contents are not reduced obviously and further research may be needed to examine the behaviors of S and P in the process.