The preparation of functional material titanium carbide by the carbothermal reduction of Ti-bearing blast furnace slag with microwave heating is an effective method for valuable metals recovery;it can alleviate the en...The preparation of functional material titanium carbide by the carbothermal reduction of Ti-bearing blast furnace slag with microwave heating is an effective method for valuable metals recovery;it can alleviate the environmental pressure caused by slag stocking.The dynamic dielectric parameters of Ti-bearing blast furnace slag/pulverized coal mixture under high-temperature heating are measured by the cylindrical resonant cavity perturbation method.Combining the transient dipole and large π bond delocalization polarization phenomena, the interaction mechanism of the microwave macroscopic non-thermal effect on the titanium carbide synthesis reaction was revealed.The material thickness range during microwave heating was optimized by the joint analysis of penetration depth and reflection loss, which is of great significance to the design of the microwave reactor for the carbothermal reduction of Ti-bearing blast furnace slag.展开更多
To meet the needs of environmental protection and promote the application of chromium-free refractories for RH refining furnaces, research on application of new non-burned periclase-magnesia alumina spinel bricks was ...To meet the needs of environmental protection and promote the application of chromium-free refractories for RH refining furnaces, research on application of new non-burned periclase-magnesia alumina spinel bricks was carried out. Through laboratory research and field application, it is concluded that the non-burned periclase-magnesia alumina spinel brick can replace magnesia-chrome material, and its service life is equivalent to that of the magnesia-chrome material with reduced cost.展开更多
Steel slag is regarded as one of the most widespread solid by-products of steel smelting with little commercial value.It can play a vital role in the construction industry especially in the field of transportation inf...Steel slag is regarded as one of the most widespread solid by-products of steel smelting with little commercial value.It can play a vital role in the construction industry especially in the field of transportation infrastructure construction.However,there are few evaluation systems established on the high-temperature deformation and low-temperature fracture behavior of steel slag rubber asphalt mixture(SSRAM).This study explores the perfor-mance of SSRAM by uniaxial penetration test,Semi-Circular Bending(SCB)test and evaluates test data through regression analysis.The uniaxial penetration test results shows that the failure deformation of SSRAM increases with the increase of steel slag content.According to the minimum allowable permanent deformation(R TS-min),the deformation of SSRAM should be controlled within 3 mm.Meanwhile,the cracking index of the SSRAM surface layer calculated at low temperature can meet the design requirements.The SCB test results show that the stress peak degradation rate(specimens with 10 mm notch are compared with 0 mm)of SSRAM with 40%steel slag content is 20.04%.That means proper steel slag content makes the stress peak degradation rate of SSRAM reaches the lowest value.The calculation results of fracture energy density(J_(1C))show that the steel slag additive reduced the fracture energy density of SSRAM.However,it is still proved that SSRAM with 40%steel slag has the best low-temperature fracture performance based on critical fracture toughness(K_(1C))and fracture stress peak.Further-more,the crack propagation velocity parametric equation of SSRAM is proposed through fracture mechanics theory and the increase of velocity is exponential.Considering the high-temperature deformation resistance and low-temperature fracture property,the SSRAM surface layer with 40%steel slag content showed a batter application potential.展开更多
基金financially supported by the National Key R&D Program of China (No.2018YFC1900500)the National Natural Science Foundation of China (No.51961020)+1 种基金the Key Technology Research and Industrialization Application Demonstration Project of the Renewable Multi-energy Complementary (No.2018IB020)the Academician Workstation of Kefa Cen (No.2018IC085)。
文摘The preparation of functional material titanium carbide by the carbothermal reduction of Ti-bearing blast furnace slag with microwave heating is an effective method for valuable metals recovery;it can alleviate the environmental pressure caused by slag stocking.The dynamic dielectric parameters of Ti-bearing blast furnace slag/pulverized coal mixture under high-temperature heating are measured by the cylindrical resonant cavity perturbation method.Combining the transient dipole and large π bond delocalization polarization phenomena, the interaction mechanism of the microwave macroscopic non-thermal effect on the titanium carbide synthesis reaction was revealed.The material thickness range during microwave heating was optimized by the joint analysis of penetration depth and reflection loss, which is of great significance to the design of the microwave reactor for the carbothermal reduction of Ti-bearing blast furnace slag.
文摘To meet the needs of environmental protection and promote the application of chromium-free refractories for RH refining furnaces, research on application of new non-burned periclase-magnesia alumina spinel bricks was carried out. Through laboratory research and field application, it is concluded that the non-burned periclase-magnesia alumina spinel brick can replace magnesia-chrome material, and its service life is equivalent to that of the magnesia-chrome material with reduced cost.
基金This research was funded by the Department of Transportation of Hebei Province(Grant No.TH1-202019)。
文摘Steel slag is regarded as one of the most widespread solid by-products of steel smelting with little commercial value.It can play a vital role in the construction industry especially in the field of transportation infrastructure construction.However,there are few evaluation systems established on the high-temperature deformation and low-temperature fracture behavior of steel slag rubber asphalt mixture(SSRAM).This study explores the perfor-mance of SSRAM by uniaxial penetration test,Semi-Circular Bending(SCB)test and evaluates test data through regression analysis.The uniaxial penetration test results shows that the failure deformation of SSRAM increases with the increase of steel slag content.According to the minimum allowable permanent deformation(R TS-min),the deformation of SSRAM should be controlled within 3 mm.Meanwhile,the cracking index of the SSRAM surface layer calculated at low temperature can meet the design requirements.The SCB test results show that the stress peak degradation rate(specimens with 10 mm notch are compared with 0 mm)of SSRAM with 40%steel slag content is 20.04%.That means proper steel slag content makes the stress peak degradation rate of SSRAM reaches the lowest value.The calculation results of fracture energy density(J_(1C))show that the steel slag additive reduced the fracture energy density of SSRAM.However,it is still proved that SSRAM with 40%steel slag has the best low-temperature fracture performance based on critical fracture toughness(K_(1C))and fracture stress peak.Further-more,the crack propagation velocity parametric equation of SSRAM is proposed through fracture mechanics theory and the increase of velocity is exponential.Considering the high-temperature deformation resistance and low-temperature fracture property,the SSRAM surface layer with 40%steel slag content showed a batter application potential.