有向图的反能量是指有向图的反邻接矩阵的能量.本文利用有向图的运算构造出了几类有向图,它们中的每一个都满足有向图的反能量等于其底图的能量.部分回答了Adiga等人在文[The skew energy of a digraph,Linear Algebra Appl.,2010,432:1...有向图的反能量是指有向图的反邻接矩阵的能量.本文利用有向图的运算构造出了几类有向图,它们中的每一个都满足有向图的反能量等于其底图的能量.部分回答了Adiga等人在文[The skew energy of a digraph,Linear Algebra Appl.,2010,432:1825-1835]中提出的一个公开问题.展开更多
The propagation of axisymmetric free vibrations in an infinite homogeneous isotropic micropolar thermoelastic plate without energy dissipation subjected to stress free and rigidly fixed boundary conditions is investig...The propagation of axisymmetric free vibrations in an infinite homogeneous isotropic micropolar thermoelastic plate without energy dissipation subjected to stress free and rigidly fixed boundary conditions is investigated. The secular equations for homogeneous isotropic micropolar thermoelastic plate without energy dissipation in closed form for symmetric and skew symmetric wave modes of propagation are derived. The different regions of secular equations are obtained. At short wavelength limits, the secular equations for symmetric and skew symmetric modes of wave propagation in a stress free insulated and isothermal plate reduce to Rayleigh surface wave frequency equation. The results for thermoelastic, micropolar elastic and elastic materials are obtained as particular cases from the derived secular equations. The amplitudes of displacement components, microrotation and temperature distribution are also computed during the symmetric and skew symmetric motion of the plate. The dispersion curves for symmetric and skew symmetric modes and amplitudes of displacement components, microrotation and temperature distribution in case of fundamental symmetric and skew symmetric modes are presented graphically. The analytical and numerical results are found to be in close agreement.展开更多
文摘有向图的反能量是指有向图的反邻接矩阵的能量.本文利用有向图的运算构造出了几类有向图,它们中的每一个都满足有向图的反能量等于其底图的能量.部分回答了Adiga等人在文[The skew energy of a digraph,Linear Algebra Appl.,2010,432:1825-1835]中提出的一个公开问题.
文摘The propagation of axisymmetric free vibrations in an infinite homogeneous isotropic micropolar thermoelastic plate without energy dissipation subjected to stress free and rigidly fixed boundary conditions is investigated. The secular equations for homogeneous isotropic micropolar thermoelastic plate without energy dissipation in closed form for symmetric and skew symmetric wave modes of propagation are derived. The different regions of secular equations are obtained. At short wavelength limits, the secular equations for symmetric and skew symmetric modes of wave propagation in a stress free insulated and isothermal plate reduce to Rayleigh surface wave frequency equation. The results for thermoelastic, micropolar elastic and elastic materials are obtained as particular cases from the derived secular equations. The amplitudes of displacement components, microrotation and temperature distribution are also computed during the symmetric and skew symmetric motion of the plate. The dispersion curves for symmetric and skew symmetric modes and amplitudes of displacement components, microrotation and temperature distribution in case of fundamental symmetric and skew symmetric modes are presented graphically. The analytical and numerical results are found to be in close agreement.