The three-dimensional (3D) spot-scanning method is one of the most commonly used irradiation methods in charged particle beam radiotherapy. Generally, spot-scanning beam delivery utilizes the same size pencil beam t...The three-dimensional (3D) spot-scanning method is one of the most commonly used irradiation methods in charged particle beam radiotherapy. Generally, spot-scanning beam delivery utilizes the same size pencil beam to irradiate the tumor targets. Here we propose a spot-scanning beam delivery method with laterally- and longitudinally- mixed size pencil beams for heavy ion radiotherapy. This uses pencil beams with a bigger spot size in the lateral direction and wider mini spread-out Bragg peak (mini-SOBP) to irradiate the inner part of a target volume, and pencil beams with a smaller spot size in the lateral direction and narrower mini-SOBP to irradiate the peripheral part of the target volume. Instead of being controlled by the accelerator, the lateral size of the pencil beam was adjusted by inserting Ta scatterers in the beam delivery line. The longitudinal size Of the pencil beam (i.e. the width of the mini-SOBP) was adjusted by tilting mini ridge filters along the beam direction. The new spot-scanning beam delivery using carbon ions was investigated theoretically and compared with traditional spot-scanning beam delivery. Our results show that the new spot-scanning beam delivery has smaller lateral penumbra, steeper distal dose fall-off and the dose homogeneity (1-standard deviati^n/mean) in the target volume is better than 95%.展开更多
The spot size of the X-ray source is a key parameter of a flash-radiography facility, and is usually quoted as an evaluation of the resolving power. The pinhole imaging technique is applied to measure the spot size of...The spot size of the X-ray source is a key parameter of a flash-radiography facility, and is usually quoted as an evaluation of the resolving power. The pinhole imaging technique is applied to measure the spot size of the Dragon-I linear induction accelerator, by which a two-dimensional spatial distribution of the source spot is obtained. Experimental measurements are performed to measure the spot image when the transportation and focusing of the electron beam are tuned by adjusting the currents of solenoids in the downstream section. The spot size of full-width at half maximum and that defined from the spatial frequency at half peak value of the modulation transfer function are calculated and discussed.展开更多
In flash-radiography experiments, the quality of the acquired image strongly depends on the focal size of the X-ray source spot. A variety of techniques based on imaging of the pinhole, the slit and the rollbar are ad...In flash-radiography experiments, the quality of the acquired image strongly depends on the focal size of the X-ray source spot. A variety of techniques based on imaging of the pinhole, the slit and the rollbar are adopted to measure the focal spot size of the Dragon-I linear induction accelerator. The image of the pinhole provides a two-dimensional distribution of the X-ray spot, while those of the slit and the rollbar give a line-spread distribution and an edge-spread distribution, respectively. The spot size characterized by the full-width at half-maximum and that characterized by the LANL definition are calculated for comparison.展开更多
基金Supported by Key Project of National Natural Science Foundation of China(U1232207)National Key Technology Support Program of the Ministry of Science and Technology of China(2015BAI01B11)+1 种基金National Key Research and Development Program of the Ministry of Science and Technology of China(2016YFC0904602)National Natural Science Foundation of China(11075191,11205217,11475231,11505249)
文摘The three-dimensional (3D) spot-scanning method is one of the most commonly used irradiation methods in charged particle beam radiotherapy. Generally, spot-scanning beam delivery utilizes the same size pencil beam to irradiate the tumor targets. Here we propose a spot-scanning beam delivery method with laterally- and longitudinally- mixed size pencil beams for heavy ion radiotherapy. This uses pencil beams with a bigger spot size in the lateral direction and wider mini spread-out Bragg peak (mini-SOBP) to irradiate the inner part of a target volume, and pencil beams with a smaller spot size in the lateral direction and narrower mini-SOBP to irradiate the peripheral part of the target volume. Instead of being controlled by the accelerator, the lateral size of the pencil beam was adjusted by inserting Ta scatterers in the beam delivery line. The longitudinal size Of the pencil beam (i.e. the width of the mini-SOBP) was adjusted by tilting mini ridge filters along the beam direction. The new spot-scanning beam delivery using carbon ions was investigated theoretically and compared with traditional spot-scanning beam delivery. Our results show that the new spot-scanning beam delivery has smaller lateral penumbra, steeper distal dose fall-off and the dose homogeneity (1-standard deviati^n/mean) in the target volume is better than 95%.
基金Projects (50905109, 51075271) supported by the National Natural Science Foundation of ChinaProject (20090073110039) supported by the Doctoral Fundation of Ministry of Education, ChinaProject supported by the Young Faulty Research Foundation of Shanghai JiaoTong University, China
文摘The spot size of the X-ray source is a key parameter of a flash-radiography facility, and is usually quoted as an evaluation of the resolving power. The pinhole imaging technique is applied to measure the spot size of the Dragon-I linear induction accelerator, by which a two-dimensional spatial distribution of the source spot is obtained. Experimental measurements are performed to measure the spot image when the transportation and focusing of the electron beam are tuned by adjusting the currents of solenoids in the downstream section. The spot size of full-width at half maximum and that defined from the spatial frequency at half peak value of the modulation transfer function are calculated and discussed.
文摘In flash-radiography experiments, the quality of the acquired image strongly depends on the focal size of the X-ray source spot. A variety of techniques based on imaging of the pinhole, the slit and the rollbar are adopted to measure the focal spot size of the Dragon-I linear induction accelerator. The image of the pinhole provides a two-dimensional distribution of the X-ray spot, while those of the slit and the rollbar give a line-spread distribution and an edge-spread distribution, respectively. The spot size characterized by the full-width at half-maximum and that characterized by the LANL definition are calculated for comparison.