Canadian iron concentrate(CIC)can elevate the ferrous grade and lower the contents of gangue components and harmful elements in the sinter.To understand high-temperature characteristics of CIC and typical iron ore,the...Canadian iron concentrate(CIC)can elevate the ferrous grade and lower the contents of gangue components and harmful elements in the sinter.To understand high-temperature characteristics of CIC and typical iron ore,the formation of the melt was calculated mainly through FactSage 7.2,and melt fluidity(MF)test for iron ore fines and penetration characteristic test of CIC melt into iron ore nuclei were carried out via micro-sintering method.The results show that hematite,calcium ferrites,dicalcium silicate,and magnetite take part in the formation of the melt in N2.The formation temperature of the liquid for CIC is higher than that for hematite/limonite ore.The MF of CIC is lower than that of hematite/limonite ore fines.The MF of hematite/limonite ore fines is dominated by the liquid amount and melt viscosity.The penetration depth(PD)of CIC melt into limonite ore nuclei is smaller than that into hematite ore nuclei.The PD is related to the reaction ability of the nuclei with the melt.Based on above results,sinter pot tests were conducted.The result shows that in the base ore blends including two hematite ores and two limonite ores,adding CIC deteriorates the sintering indexes.Increasing the proportion of high-MF and small-PD hematite ore can significantly improve the sintering indexes.10 mass%is a suit-able proportion for adding CIC in ore blends.展开更多
Free opening rate is mainly determined by the performance of the ladle filler sand. High free opening rates of ladles are required in steel making to improve steel quality. Chromite ladle filler sands are one of the m...Free opening rate is mainly determined by the performance of the ladle filler sand. High free opening rates of ladles are required in steel making to improve steel quality. Chromite ladle filler sands are one of the most widely used ladle filler sand. Several operative variables and materials characteristics affect the performance of the sands. Three sets of chromite ladle filler sands were selected and researches were focused on the sintering hehaviour and per- formance of the sands under operative conditions. The effect of particle size distribution on sintering, microstruc- ture, flowability, and permeability were presented. In all cases, the particle size varies from 0.1 to 1.5 mm corre- sponding to free flowing powders. One of the samples has higher permeability factor in comparison with others due to low particle size distribution. The other sample presents very good free opening due to its very good flowability and permeability factor.展开更多
Induction hardening of dense Fe–Cr/Mo alloys processed via the powder-metallurgy route was studied. The Fe-3Cr-0.5Mo, Fe-1.5Cr-0.2Mo, and Fe-0.85 Mo pre-alloyed powders were mixed with 0.4wt%, 0.6wt%, and 0.8wt% C an...Induction hardening of dense Fe–Cr/Mo alloys processed via the powder-metallurgy route was studied. The Fe-3Cr-0.5Mo, Fe-1.5Cr-0.2Mo, and Fe-0.85 Mo pre-alloyed powders were mixed with 0.4wt%, 0.6wt%, and 0.8wt% C and compacted at 500, 600, and 700 MPa, respectively. The compacts were sintered at 1473 K for 1 h and then cooled at 6 K/min. Ferrite with pearlite was mostly observed in the sintered alloys with 0.4wt% C, whereas a carbide network was also present in the alloys with 0.8wt% C. Graphite at prior particle boundaries led to deterioration of the mechanical properties of alloys with 0.8wt% C, whereas no significant induction hardening was achieved in alloys with 0.4wt% C. Among the investigated samples, alloys with 0.6wt% C exhibited the highest strength and ductility and were found to be suitable for induction hardening. The hardening was carried out at a frequency of 2.0 kHz for 2–3 s. A case depth of 2.5 mm was achieved while maintaining the bulk(interior) hardness of approximately HV 230. A martensitic structure was observed on the outer periphery of the samples. The hardness varied from HV 600 to HV 375 from the sample surface to the interior of the case hardened region. The best combination of properties and hardening depth was achieved in case of the Fe-1.5Cr-0.2Mo alloy with 0.6wt% C.展开更多
基金The authors are grateful for the financial support of the Fundamental Research Funds for the Central Universities(Grant No.FRF-IC-18-010).
文摘Canadian iron concentrate(CIC)can elevate the ferrous grade and lower the contents of gangue components and harmful elements in the sinter.To understand high-temperature characteristics of CIC and typical iron ore,the formation of the melt was calculated mainly through FactSage 7.2,and melt fluidity(MF)test for iron ore fines and penetration characteristic test of CIC melt into iron ore nuclei were carried out via micro-sintering method.The results show that hematite,calcium ferrites,dicalcium silicate,and magnetite take part in the formation of the melt in N2.The formation temperature of the liquid for CIC is higher than that for hematite/limonite ore.The MF of CIC is lower than that of hematite/limonite ore fines.The MF of hematite/limonite ore fines is dominated by the liquid amount and melt viscosity.The penetration depth(PD)of CIC melt into limonite ore nuclei is smaller than that into hematite ore nuclei.The PD is related to the reaction ability of the nuclei with the melt.Based on above results,sinter pot tests were conducted.The result shows that in the base ore blends including two hematite ores and two limonite ores,adding CIC deteriorates the sintering indexes.Increasing the proportion of high-MF and small-PD hematite ore can significantly improve the sintering indexes.10 mass%is a suit-able proportion for adding CIC in ore blends.
文摘Free opening rate is mainly determined by the performance of the ladle filler sand. High free opening rates of ladles are required in steel making to improve steel quality. Chromite ladle filler sands are one of the most widely used ladle filler sand. Several operative variables and materials characteristics affect the performance of the sands. Three sets of chromite ladle filler sands were selected and researches were focused on the sintering hehaviour and per- formance of the sands under operative conditions. The effect of particle size distribution on sintering, microstruc- ture, flowability, and permeability were presented. In all cases, the particle size varies from 0.1 to 1.5 mm corre- sponding to free flowing powders. One of the samples has higher permeability factor in comparison with others due to low particle size distribution. The other sample presents very good free opening due to its very good flowability and permeability factor.
基金the support of the MHRD fellowship from Government of India
文摘Induction hardening of dense Fe–Cr/Mo alloys processed via the powder-metallurgy route was studied. The Fe-3Cr-0.5Mo, Fe-1.5Cr-0.2Mo, and Fe-0.85 Mo pre-alloyed powders were mixed with 0.4wt%, 0.6wt%, and 0.8wt% C and compacted at 500, 600, and 700 MPa, respectively. The compacts were sintered at 1473 K for 1 h and then cooled at 6 K/min. Ferrite with pearlite was mostly observed in the sintered alloys with 0.4wt% C, whereas a carbide network was also present in the alloys with 0.8wt% C. Graphite at prior particle boundaries led to deterioration of the mechanical properties of alloys with 0.8wt% C, whereas no significant induction hardening was achieved in alloys with 0.4wt% C. Among the investigated samples, alloys with 0.6wt% C exhibited the highest strength and ductility and were found to be suitable for induction hardening. The hardening was carried out at a frequency of 2.0 kHz for 2–3 s. A case depth of 2.5 mm was achieved while maintaining the bulk(interior) hardness of approximately HV 230. A martensitic structure was observed on the outer periphery of the samples. The hardness varied from HV 600 to HV 375 from the sample surface to the interior of the case hardened region. The best combination of properties and hardening depth was achieved in case of the Fe-1.5Cr-0.2Mo alloy with 0.6wt% C.