Single event irradiation-hardened power MOSFET is the most important device for DC/DC converter in space environment application. Single event gate rupture (SEGR) and single event burnout (SEB), which will degrade...Single event irradiation-hardened power MOSFET is the most important device for DC/DC converter in space environment application. Single event gate rupture (SEGR) and single event burnout (SEB), which will degrade the running safety and reliability of spacecraft, are the two typical failure modes in power MOSFETs. In this paper, based on recombination mechanism of interface between oxide and silicon, a novel hardened power MOS- FETs structure for SEGR and SEB is proposed. The structure comprises double stagger partial silicon-on-insulator (DSPSOI) layers. Results show that the safety operation area (SOA) of a 130 V N-channel power MOSFET in single event irradiation environment is enhanced by up to 50% when the linear-energy-transfer value of heavy ion is a constant of 98 MeV-cm2/mg in the whole incident track, and the other parameters are almost maintained at the same value. Thus this novel structure can be widely used in designing single event irradiation-hardened power MOSFETs.展开更多
针对空间应用,开展SiC MOSFET单粒子效应试验研究。在加速器上用重离子辐照1200 V SiC MOSFET,离子线性能量传输(LET)在0.26~118 MeV·cm^(2)/mg之间,辐照中被试器件加50~600 V静态漏源偏置电压、栅源短接,实时测量电特性,进行辐照...针对空间应用,开展SiC MOSFET单粒子效应试验研究。在加速器上用重离子辐照1200 V SiC MOSFET,离子线性能量传输(LET)在0.26~118 MeV·cm^(2)/mg之间,辐照中被试器件加50~600 V静态漏源偏置电压、栅源短接,实时测量电特性,进行辐照后栅应力(PIGS)测试。试验结果发现,50~100 V偏置电压下,离子引起瞬态电流,PIGS测试栅失效。分析认为离子引起栅氧化物潜在损伤,PIGS测试过程中,潜在损伤进一步退化导致栅失效。氧化物潜在损伤不仅与辐照偏置电压有关,还与入射离子LET和注量有关。PIGS测试需要的栅应力时间与潜在损伤程度有关,可超过300 s。并给出了电荷累积损伤模型。模型进行SiC MOSFET单粒子效应评估时,应考虑离子引起栅氧化物潜在损伤的影响,需根据轨道和任务周期确定试验离子注量,根据应用情况确定辐照偏置电压,并评估确定PIGS测试栅应力时间。展开更多
The mechanism of single-event gate-rupture in an N-channel VDMOS in a space radiation environment was analyzed. Based on the mechanism, a novel structure of VDMOS for improving single-event gate-rupture is proposed, a...The mechanism of single-event gate-rupture in an N-channel VDMOS in a space radiation environment was analyzed. Based on the mechanism, a novel structure of VDMOS for improving single-event gate-rupture is proposed, and the structure is simulated and it is demonstrated that it can improve a VDMOS SEGR threshold voltage by 120%. With this structure, the specific on-resistance value of a VDMOS is reduced by 15.5% as the breakdown voltage almost maintains the same value. As only one mask added, which is local oxidation of silicon instead of an active processing area, the new structure VDMOS it is easily fabricated. The novel structure can be widely used in high-voltage VDMOS in a space radiation environment.展开更多
The synergistic effect of total ionizing dose(TID) and single event gate rupture(SEGR) in SiC power metal–oxide–semiconductor field effect transistors(MOSFETs) is investigated via simulation. The device is found to ...The synergistic effect of total ionizing dose(TID) and single event gate rupture(SEGR) in SiC power metal–oxide–semiconductor field effect transistors(MOSFETs) is investigated via simulation. The device is found to be more sensitive to SEGR with TID increasing, especially at higher temperature. The microscopic mechanism is revealed to be the increased trapped charges induced by TID and subsequent enhancement of electric field intensity inside the oxide layer.展开更多
基金Project supported by the National Natural Science Foundation of China(No.61464002)the Grand Science and Technology Special Project in Guizhou Province of China(No.[2015]6006)the Ministry of Education Open Foundation for Semiconductor Power Device Reliability(No.010201)
文摘Single event irradiation-hardened power MOSFET is the most important device for DC/DC converter in space environment application. Single event gate rupture (SEGR) and single event burnout (SEB), which will degrade the running safety and reliability of spacecraft, are the two typical failure modes in power MOSFETs. In this paper, based on recombination mechanism of interface between oxide and silicon, a novel hardened power MOS- FETs structure for SEGR and SEB is proposed. The structure comprises double stagger partial silicon-on-insulator (DSPSOI) layers. Results show that the safety operation area (SOA) of a 130 V N-channel power MOSFET in single event irradiation environment is enhanced by up to 50% when the linear-energy-transfer value of heavy ion is a constant of 98 MeV-cm2/mg in the whole incident track, and the other parameters are almost maintained at the same value. Thus this novel structure can be widely used in designing single event irradiation-hardened power MOSFETs.
文摘针对空间应用,开展SiC MOSFET单粒子效应试验研究。在加速器上用重离子辐照1200 V SiC MOSFET,离子线性能量传输(LET)在0.26~118 MeV·cm^(2)/mg之间,辐照中被试器件加50~600 V静态漏源偏置电压、栅源短接,实时测量电特性,进行辐照后栅应力(PIGS)测试。试验结果发现,50~100 V偏置电压下,离子引起瞬态电流,PIGS测试栅失效。分析认为离子引起栅氧化物潜在损伤,PIGS测试过程中,潜在损伤进一步退化导致栅失效。氧化物潜在损伤不仅与辐照偏置电压有关,还与入射离子LET和注量有关。PIGS测试需要的栅应力时间与潜在损伤程度有关,可超过300 s。并给出了电荷累积损伤模型。模型进行SiC MOSFET单粒子效应评估时,应考虑离子引起栅氧化物潜在损伤的影响,需根据轨道和任务周期确定试验离子注量,根据应用情况确定辐照偏置电压,并评估确定PIGS测试栅应力时间。
基金Project supported by the Pre-Research Foundation of China(No.51311050202)
文摘The mechanism of single-event gate-rupture in an N-channel VDMOS in a space radiation environment was analyzed. Based on the mechanism, a novel structure of VDMOS for improving single-event gate-rupture is proposed, and the structure is simulated and it is demonstrated that it can improve a VDMOS SEGR threshold voltage by 120%. With this structure, the specific on-resistance value of a VDMOS is reduced by 15.5% as the breakdown voltage almost maintains the same value. As only one mask added, which is local oxidation of silicon instead of an active processing area, the new structure VDMOS it is easily fabricated. The novel structure can be widely used in high-voltage VDMOS in a space radiation environment.
基金Project supported by the National Natural Science Foundation of China(Grant No.12004329)Open Project of State Key Laboratory of Intense Pulsed Radiation Simulation and Effect(Grant No.SKLIPR2115)+1 种基金Postgraduate Research and Practice Innovation Program of Jiangsu Province(Grant No.SJCX22_1704)Innovative Science and Technology Platform Project of Cooperation between Yangzhou City and Yangzhou University,China(Grant Nos.YZ202026301 and YZ202026306)。
文摘The synergistic effect of total ionizing dose(TID) and single event gate rupture(SEGR) in SiC power metal–oxide–semiconductor field effect transistors(MOSFETs) is investigated via simulation. The device is found to be more sensitive to SEGR with TID increasing, especially at higher temperature. The microscopic mechanism is revealed to be the increased trapped charges induced by TID and subsequent enhancement of electric field intensity inside the oxide layer.