Jiaozi Steamed Bread(JSB)has a unique aroma as a traditional staple food in China.The volatile compounds in JSBwere extracted by simultaneous distillation and extraction(SDE)and headspace solid-phasemicroextraction(HS...Jiaozi Steamed Bread(JSB)has a unique aroma as a traditional staple food in China.The volatile compounds in JSBwere extracted by simultaneous distillation and extraction(SDE)and headspace solid-phasemicroextraction(HS-SPME).These volatile substances were analyzed by gas chromatography-mass spectrometry(GC-MS)and gas chromatographyolfactometry-mass spectrometry(GC-O-MS).The results demonstrated that 61 volatile compounds were identified totally in samples,of which 15 were confirmed as potent aroma compounds with odor active values(OAVs)>1.The 15 potent aroma compounds were ethanol,1-butanol,1-pentanol,1-hexanol,heptanol,1-octen-3-ol,3-methyl-1-butanol,hexanal,heptanal,nonanal,(E)-2-heptenal,benzaldehyde,(E,E)-2,4-decadienal,2-pentylfuran and naphthalene.The SDEmethod had better linearity with coefficients of determination(R2)equal to or higher than 0.9991.Furthermore,the SDE method also achieved lower sensitivity and better repeatability and recovery than HS-SPME.This work provides reference method and parameters for future research on the flavor of JSB for commercial products.展开更多
The Mn-Ce-Nb-O_x/P84 catalytic filter for removal of particulates and NO simultaneous was prepared by a novel method(foam coating method). The process parameters including the concentrations of PTFE emulsion, particle...The Mn-Ce-Nb-O_x/P84 catalytic filter for removal of particulates and NO simultaneous was prepared by a novel method(foam coating method). The process parameters including the concentrations of PTFE emulsion, particle size of catalyst and calcination temperature for preparation of catalytic filters were analyzed. In addition, the physical properties and performance for removal of NO(NH_3-SCR) and particulates of Mn-Ce-Nb-O_x/P84 catalytic filter prepared under the optimized parameters, were also systematic studied. Results show that the process parameters had significant influences on stability and performance of catalytic filter, The Mn-Ce-Nb-O_x/P84 catalytic filter prepared by foam coating method under the optimized parameters, has satisfactory physical properties and catalytic performance for removal of NO and particulates at 140-220 ℃. The NO removal efficiency of catalytic filter can reach95.3% at 200 ℃ as the catalyst loading amount is 450 g/m^2, Moreover,the dust removal efficiency of MnGe-Nb-O_x/P84 catalytic filter reaches as high as 99.98%, and the PM2.5 removal efficiency also reaches99.98%. The anti-sulfur performance of Mn-Ce-Nb-O_x catalytic filter is also attractive, after injecting150 ppm SO_2, the NO removal efficiency still retains up to 85%. It is indicated that the foam coating method can not only make a bond of high strength between catalyst and filter, but also make the catalytic filter possessing an excellent and stable performance for removal of NO and particulates.展开更多
Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion ...Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion is used to deduce the stress redistribution around the longwall mining panel. The mining-induced microseismic events were recorded by mounting an array of receivers on the surface, above the active panel. After processing and filtering the seismic data, the three-dimensional tomography images of the p-wave velocity variations by SIRT passive seismic velocity tomography were provided. To display the velocity changes on coal seam level and subsequently to infer the stress redistribution, these three-dimensional tomograms into the coal seam level were sliced. In addition, the boundary element method (BEM) was used to simulate the stress redistribution. The results show that the inferred stresses from the passive seismic tomograms are conformed to numerical models and theoretical concept of the stress redistribution around the longwall panel. In velocity tomograms, the main zones of the stress redistribution arotmd the panel, including front and side abutment pressures, and gob stress are obvious and also the movement of stress zones along the face advancement is evident. Moreover, the effect of the advance rate of the face on the stress redistribution is demonstrated in tomography images. The research result proves that the SIRT passive seismic velocity tomography has an ultimate potential for monitoring the changes of stress redistribution around the longwall mining panel continuously and subsequently to improve safety of mining operations.展开更多
Effective utilization of water and energy is the key factor of sustainable development in process industries, and also an important science and technology problem to be solved in systems engineering. In this paper,two...Effective utilization of water and energy is the key factor of sustainable development in process industries, and also an important science and technology problem to be solved in systems engineering. In this paper,two new methods of optimal design of water utilization network with energy integration in process industries are presented, that is, stepwise and simultaneous optimization methods. They are suitable for both single contaminant and multi-contaminant systems, and the integration of energy can be carried out in the whole process system, not only limited in water network, so that energy can be utilized effectively. The two methods are illustrated by case study.展开更多
The rapid development of computational technology and the increasing energy demand have improved heat exchanger network(HEN)synthesis.The HEN synthesis involves several optimizations of matches,distributions of heat l...The rapid development of computational technology and the increasing energy demand have improved heat exchanger network(HEN)synthesis.The HEN synthesis involves several optimizations of matches,distributions of heat loads,and stream splitting of heat units.Thus,obtaining good results at high efficiency has been the main standard for evaluating the techniques in the research area of HEN synthesis.This paper first summarizes and analyzes the main contributions of the existing HEN synthesis techniques.To compare related data quantitively,information on ten typical cases is presented in this paper.Furthermore,recently improved solutions for commonly encountered existing literature cases demonstrate the evolution and competition trends in the field of HEN synthesis.The comparison data presented in this paper not only provide a useful reference for future research but also present the optimization directions.Based on the findings of this study,it is noted that there is still a large room for improvement,and current approaches are incapable of dealing with all HEN cases.Moreover,it is still difficult to escape a local optimum and overcome structural constraints when seeking the global optimum.As a follow-up to the current work,the parallel computing mode and adaptively coordinating the ratio of global and local searching abilities are major development trends for future investigation.展开更多
In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hy...In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hydraulic fractures in layered porous reservoirs with modulus contrast.The coupled hydromechanical model is first verified against an analytical solution and a laboratory experiment.Then,the fracture geometry(e.g.height,aperture,and area)and fluid pressure evolutions of multiple hydraulic fractures placed in a porous reservoir interbedded with alternating stiff and soft layers are investigated using the model.The stress and pore pressure distributions within the layered reservoir during fluid injection are also presented.The simulation results reveal that stress umbrellas are easily to form among multiple hydraulic fractures’tips when propagating in soft layers,which impedes the simultaneous height growth.It is also observed that the impediment effect of soft layer is much more significant in the fractures suppressed by the preferential growth of adjoining fractures.After that,the combined effect of in situ stress ratio and fracturing spacing on the multi-fracture height growth is presented,and the results elucidate the influence of in situ stress ratio on the height growth behavior depending on the fracture spacing.Finally,it is found that the inclusion of soft layers changes the aperture distribution of outmost and interior hydraulic fractures.The results obtained from this study may provide some insights on the understanding of hydraulic fracture height containment observed in filed.展开更多
In order to improve the design level of partially embedded single piles under simultaneous axial and lateral loads, the differential solutions were deduced, in which the soil was treated as an ideal, elastic, homogene...In order to improve the design level of partially embedded single piles under simultaneous axial and lateral loads, the differential solutions were deduced, in which the soil was treated as an ideal, elastic, homogeneous, semi-infinite isotropic medium. A comparison was made between model test results and the obtained solutions to show their validity. The calculation results indicate that the horizontal displacement and bending moment of the pile increase with increases of the axial and lateral loads. The maximum horizontal displacement and bending moment decrease by 37.9% and 13.9%, respectively, when the elastic modulus of soil increases from 4 MPa to 20 MPa. The Poisson ratio of soil plays a marginal role in pile responses. There is a critical pile length under the ground, beyond which the pile behaves as though it was infinitely long. The presented solutions can make allowance for the continuous nature of soil, and if condition permits, they can approach exact ones.展开更多
基金This project was supported by the National Natural Science Foundation of China(No.31701635)the Key Laboratory of Staple Grain Processing,Ministry of Agriculture(No.DZLS201703)the Henan University of Technology High-level Talents Fund(No.2015BS009).
文摘Jiaozi Steamed Bread(JSB)has a unique aroma as a traditional staple food in China.The volatile compounds in JSBwere extracted by simultaneous distillation and extraction(SDE)and headspace solid-phasemicroextraction(HS-SPME).These volatile substances were analyzed by gas chromatography-mass spectrometry(GC-MS)and gas chromatographyolfactometry-mass spectrometry(GC-O-MS).The results demonstrated that 61 volatile compounds were identified totally in samples,of which 15 were confirmed as potent aroma compounds with odor active values(OAVs)>1.The 15 potent aroma compounds were ethanol,1-butanol,1-pentanol,1-hexanol,heptanol,1-octen-3-ol,3-methyl-1-butanol,hexanal,heptanal,nonanal,(E)-2-heptenal,benzaldehyde,(E,E)-2,4-decadienal,2-pentylfuran and naphthalene.The SDEmethod had better linearity with coefficients of determination(R2)equal to or higher than 0.9991.Furthermore,the SDE method also achieved lower sensitivity and better repeatability and recovery than HS-SPME.This work provides reference method and parameters for future research on the flavor of JSB for commercial products.
基金Project supported by the National Natural Science Foundation of China(21501097,21272118,21577065)the Natural Science Foundation of Jiangsu Province(BK20170954)+2 种基金the Startup Foundation for Introducing Talent of NUIST(2017r073)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China,China(18KJB430019)University Science Research Project of Jiangsu Province(18KJB430019)
文摘The Mn-Ce-Nb-O_x/P84 catalytic filter for removal of particulates and NO simultaneous was prepared by a novel method(foam coating method). The process parameters including the concentrations of PTFE emulsion, particle size of catalyst and calcination temperature for preparation of catalytic filters were analyzed. In addition, the physical properties and performance for removal of NO(NH_3-SCR) and particulates of Mn-Ce-Nb-O_x/P84 catalytic filter prepared under the optimized parameters, were also systematic studied. Results show that the process parameters had significant influences on stability and performance of catalytic filter, The Mn-Ce-Nb-O_x/P84 catalytic filter prepared by foam coating method under the optimized parameters, has satisfactory physical properties and catalytic performance for removal of NO and particulates at 140-220 ℃. The NO removal efficiency of catalytic filter can reach95.3% at 200 ℃ as the catalyst loading amount is 450 g/m^2, Moreover,the dust removal efficiency of MnGe-Nb-O_x/P84 catalytic filter reaches as high as 99.98%, and the PM2.5 removal efficiency also reaches99.98%. The anti-sulfur performance of Mn-Ce-Nb-O_x catalytic filter is also attractive, after injecting150 ppm SO_2, the NO removal efficiency still retains up to 85%. It is indicated that the foam coating method can not only make a bond of high strength between catalyst and filter, but also make the catalytic filter possessing an excellent and stable performance for removal of NO and particulates.
文摘Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion is used to deduce the stress redistribution around the longwall mining panel. The mining-induced microseismic events were recorded by mounting an array of receivers on the surface, above the active panel. After processing and filtering the seismic data, the three-dimensional tomography images of the p-wave velocity variations by SIRT passive seismic velocity tomography were provided. To display the velocity changes on coal seam level and subsequently to infer the stress redistribution, these three-dimensional tomograms into the coal seam level were sliced. In addition, the boundary element method (BEM) was used to simulate the stress redistribution. The results show that the inferred stresses from the passive seismic tomograms are conformed to numerical models and theoretical concept of the stress redistribution around the longwall panel. In velocity tomograms, the main zones of the stress redistribution arotmd the panel, including front and side abutment pressures, and gob stress are obvious and also the movement of stress zones along the face advancement is evident. Moreover, the effect of the advance rate of the face on the stress redistribution is demonstrated in tomography images. The research result proves that the SIRT passive seismic velocity tomography has an ultimate potential for monitoring the changes of stress redistribution around the longwall mining panel continuously and subsequently to improve safety of mining operations.
文摘Effective utilization of water and energy is the key factor of sustainable development in process industries, and also an important science and technology problem to be solved in systems engineering. In this paper,two new methods of optimal design of water utilization network with energy integration in process industries are presented, that is, stepwise and simultaneous optimization methods. They are suitable for both single contaminant and multi-contaminant systems, and the integration of energy can be carried out in the whole process system, not only limited in water network, so that energy can be utilized effectively. The two methods are illustrated by case study.
基金supported by the National Natural Science Foundation of China(Grant Nos.21978171 and 51976126)the Capacity Building Plan for some Non-military Universities and Colleges of Shanghai Scientific Committee(Grant Nos.16060502600 and 20060502000)。
文摘The rapid development of computational technology and the increasing energy demand have improved heat exchanger network(HEN)synthesis.The HEN synthesis involves several optimizations of matches,distributions of heat loads,and stream splitting of heat units.Thus,obtaining good results at high efficiency has been the main standard for evaluating the techniques in the research area of HEN synthesis.This paper first summarizes and analyzes the main contributions of the existing HEN synthesis techniques.To compare related data quantitively,information on ten typical cases is presented in this paper.Furthermore,recently improved solutions for commonly encountered existing literature cases demonstrate the evolution and competition trends in the field of HEN synthesis.The comparison data presented in this paper not only provide a useful reference for future research but also present the optimization directions.Based on the findings of this study,it is noted that there is still a large room for improvement,and current approaches are incapable of dealing with all HEN cases.Moreover,it is still difficult to escape a local optimum and overcome structural constraints when seeking the global optimum.As a follow-up to the current work,the parallel computing mode and adaptively coordinating the ratio of global and local searching abilities are major development trends for future investigation.
文摘In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hydraulic fractures in layered porous reservoirs with modulus contrast.The coupled hydromechanical model is first verified against an analytical solution and a laboratory experiment.Then,the fracture geometry(e.g.height,aperture,and area)and fluid pressure evolutions of multiple hydraulic fractures placed in a porous reservoir interbedded with alternating stiff and soft layers are investigated using the model.The stress and pore pressure distributions within the layered reservoir during fluid injection are also presented.The simulation results reveal that stress umbrellas are easily to form among multiple hydraulic fractures’tips when propagating in soft layers,which impedes the simultaneous height growth.It is also observed that the impediment effect of soft layer is much more significant in the fractures suppressed by the preferential growth of adjoining fractures.After that,the combined effect of in situ stress ratio and fracturing spacing on the multi-fracture height growth is presented,and the results elucidate the influence of in situ stress ratio on the height growth behavior depending on the fracture spacing.Finally,it is found that the inclusion of soft layers changes the aperture distribution of outmost and interior hydraulic fractures.The results obtained from this study may provide some insights on the understanding of hydraulic fracture height containment observed in filed.
基金Projects(50708093,51208409)supported by the National Natural Science Foundation of ChinaProject(DB01129)supported by the Talent Foundation of Xi’an University of Architecture and Technology,China
文摘In order to improve the design level of partially embedded single piles under simultaneous axial and lateral loads, the differential solutions were deduced, in which the soil was treated as an ideal, elastic, homogeneous, semi-infinite isotropic medium. A comparison was made between model test results and the obtained solutions to show their validity. The calculation results indicate that the horizontal displacement and bending moment of the pile increase with increases of the axial and lateral loads. The maximum horizontal displacement and bending moment decrease by 37.9% and 13.9%, respectively, when the elastic modulus of soil increases from 4 MPa to 20 MPa. The Poisson ratio of soil plays a marginal role in pile responses. There is a critical pile length under the ground, beyond which the pile behaves as though it was infinitely long. The presented solutions can make allowance for the continuous nature of soil, and if condition permits, they can approach exact ones.