Probability-based seismic performance assessment of in-service bridges has gained much attention in the scientific community during the past decades. The nonlinear static pushover analysis is critical for describing t...Probability-based seismic performance assessment of in-service bridges has gained much attention in the scientific community during the past decades. The nonlinear static pushover analysis is critical for describing the seismic behaviour of bridges subjected to moderate to high seismicity due to its simplicity. However, in existing analysis methods,the generation of pushover curve needs tremendous amount of computational costs and requires skills, which may halter its application in practice, implying the importance of developing practice-oriented analysis method with improved efficiency. Moreover, the bridge pier performance has been modelled as deterministic, indicating that the variation associated with the pier material and mechanical properties remains unaddressed. The correlation in the performance of different piers also exists due to the common design provisions and construction conditions but has neither been taken into account. This paper develops a simplified pushover analysis procedure for the seismic assessment of simply supported RC bridges. With the proposed method, the pushover curve of the bridge can be obtained explicitly without complex finite element modelling. A random factor is introduced to reflect the uncertainty in relation to the pushover curve. The correlation in the pier performance is considered by employing the Gaussian copula function to construct the joint probability distribution. Illustrative examples are presented to demonstrate theapplicability of the method and to investigate the impact of variation and correlation in bridge pier behaviour on the seismic performance assessment.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51578315,51778337)the National Key Research and Development Program of China(Grant No.2016YFC0701404)the Faculty of Engineering and IT PhD Research Scholarship(SC 1911)from The University of Sydney
文摘Probability-based seismic performance assessment of in-service bridges has gained much attention in the scientific community during the past decades. The nonlinear static pushover analysis is critical for describing the seismic behaviour of bridges subjected to moderate to high seismicity due to its simplicity. However, in existing analysis methods,the generation of pushover curve needs tremendous amount of computational costs and requires skills, which may halter its application in practice, implying the importance of developing practice-oriented analysis method with improved efficiency. Moreover, the bridge pier performance has been modelled as deterministic, indicating that the variation associated with the pier material and mechanical properties remains unaddressed. The correlation in the performance of different piers also exists due to the common design provisions and construction conditions but has neither been taken into account. This paper develops a simplified pushover analysis procedure for the seismic assessment of simply supported RC bridges. With the proposed method, the pushover curve of the bridge can be obtained explicitly without complex finite element modelling. A random factor is introduced to reflect the uncertainty in relation to the pushover curve. The correlation in the pier performance is considered by employing the Gaussian copula function to construct the joint probability distribution. Illustrative examples are presented to demonstrate theapplicability of the method and to investigate the impact of variation and correlation in bridge pier behaviour on the seismic performance assessment.