Germanium doping in silica can be used as a method for nonlinearity enhancement. Properties of the enhanced nonlinearity in photonic crystal fiber (PCF) with a GeO2-doped core are investigated theoretically by using...Germanium doping in silica can be used as a method for nonlinearity enhancement. Properties of the enhanced nonlinearity in photonic crystal fiber (PCF) with a GeO2-doped core are investigated theoretically by using all-vector finite element method. Numerical result shows that the nonlinear coefficient of PCF is greatly enhanced with increasing doping concentration, furthermore, optimal radius of the doped region should be considered for the desired operating wavelength.展开更多
A robust design for a photonic crystal fiber (PCF) based on pure silica with small normal dispersion and high nonlinear coefficient for its dual concentric core structure is, presented. This design is suitable for f...A robust design for a photonic crystal fiber (PCF) based on pure silica with small normal dispersion and high nonlinear coefficient for its dual concentric core structure is, presented. This design is suitable for flat broadband supercontinuum (SC) generation in the 1.55-μm region. The numerical results show that the nonlinear coefficient of the proposed eight-ring PCF is 33.8 W^-1·km^-1 at 1550 nm. Ultraflat dispersion with a value between -1.65 and -0.335 ps/(nm·km) is obtained ranging from 1375 to 1625 nm. The 3-dB bandwidth of the SC is 125 nm (1496-1621 nm), with a fiber length of 80 m and a corresponding input peak power of 43.8 W. The amplitude noise is considered to be related to SC generation. For practical fabrication, the influence of the random imperfections of airhole diameters on dispersion and nonlinearity is discussed to verify the robustness of our design.展开更多
Materials science is an interdisciplinary field applying the properties of matter to various areas of science and engineering. This scientific field investigates the relationship between the structure of materials at ...Materials science is an interdisciplinary field applying the properties of matter to various areas of science and engineering. This scientific field investigates the relationship between the structure of materials at atomic or molecular scales and their macroscopic properties. It incorporates elements of applied physics and chemistry. With significant media attention focused on nanoscience and nanotechnology in recent years, materials science has been propelled to the forefront at many universities. Materials science encompasses various classes of materials, including electronic materials, functional ceramics, magnesium, material and processes for flat-panel displays, eco/environmental materials, sustainable energy materials, transportation materials, electronic packaging materials, etc.展开更多
An ultrabroadband supercontinuum (SC) is demonstrated in a pure silica photonic crystal fiber (PCF) pumped by quasi-continuous wave nanosecond-long pulses at 1,064 nm. The generated SC spectra extend- ing from 450...An ultrabroadband supercontinuum (SC) is demonstrated in a pure silica photonic crystal fiber (PCF) pumped by quasi-continuous wave nanosecond-long pulses at 1,064 nm. The generated SC spectra extend- ing from 450 to at least 2,400 nm have the salient feature of a short wavelength regime below the pump wavelength, which is much higher in intensity than the long-wavelength over the pump wavelength. The influence of pump power and repetition rates on SC generation (SCG) is explored. Results suggest that this pump source has both the advantages of short-pulse and continuous-wave pumps for SCG.展开更多
Monodispersed silica microspheres with diameter of 353nm were assembled into photonic crystal in ethanol colloidal suspensions of varied silica volume fraction at different temperature and humidity by means of control...Monodispersed silica microspheres with diameter of 353nm were assembled into photonic crystal in ethanol colloidal suspensions of varied silica volume fraction at different temperature and humidity by means of controllable vertical deposition method. The surface morphology and optical properties were studied by SEM and UV-Vis-NIR. It was found that the high-quality silica colloidal photonic crystals were obtained from ethanol solutions with environment temperature between 45℃ and 55℃, humidity between 66% and 76%, the volume fraction of microspheres is between 0.8% and 1.5%. The ordered close-packed photonic crystal fabricated by controllable vertical deposition method had the two photonic bandgaps in the visible light band and near infrared band.展开更多
基金the"973"Program of Chinathe Tianjin Natural Science Foundation(No.2003CB314906,06YFJZJC00300)
文摘Germanium doping in silica can be used as a method for nonlinearity enhancement. Properties of the enhanced nonlinearity in photonic crystal fiber (PCF) with a GeO2-doped core are investigated theoretically by using all-vector finite element method. Numerical result shows that the nonlinear coefficient of PCF is greatly enhanced with increasing doping concentration, furthermore, optimal radius of the doped region should be considered for the desired operating wavelength.
基金supported by the National "973" Program of China (No. 2010CB327605)the National Natural Science Foundation of China (No. 61077049)+2 种基金the Program for New Century Excellent Talents in the University of China (No. NCET-08-0736)the Chinese Universities Scientific Fund (No. BUPT2009RC0410)the National 111 Project of China (No. B07005)
文摘A robust design for a photonic crystal fiber (PCF) based on pure silica with small normal dispersion and high nonlinear coefficient for its dual concentric core structure is, presented. This design is suitable for flat broadband supercontinuum (SC) generation in the 1.55-μm region. The numerical results show that the nonlinear coefficient of the proposed eight-ring PCF is 33.8 W^-1·km^-1 at 1550 nm. Ultraflat dispersion with a value between -1.65 and -0.335 ps/(nm·km) is obtained ranging from 1375 to 1625 nm. The 3-dB bandwidth of the SC is 125 nm (1496-1621 nm), with a fiber length of 80 m and a corresponding input peak power of 43.8 W. The amplitude noise is considered to be related to SC generation. For practical fabrication, the influence of the random imperfections of airhole diameters on dispersion and nonlinearity is discussed to verify the robustness of our design.
文摘Materials science is an interdisciplinary field applying the properties of matter to various areas of science and engineering. This scientific field investigates the relationship between the structure of materials at atomic or molecular scales and their macroscopic properties. It incorporates elements of applied physics and chemistry. With significant media attention focused on nanoscience and nanotechnology in recent years, materials science has been propelled to the forefront at many universities. Materials science encompasses various classes of materials, including electronic materials, functional ceramics, magnesium, material and processes for flat-panel displays, eco/environmental materials, sustainable energy materials, transportation materials, electronic packaging materials, etc.
基金supported by the National Nature Science Foundation of China (No. 60608006)the New Century Excellent Talents in University (No. 08-0268)
文摘An ultrabroadband supercontinuum (SC) is demonstrated in a pure silica photonic crystal fiber (PCF) pumped by quasi-continuous wave nanosecond-long pulses at 1,064 nm. The generated SC spectra extend- ing from 450 to at least 2,400 nm have the salient feature of a short wavelength regime below the pump wavelength, which is much higher in intensity than the long-wavelength over the pump wavelength. The influence of pump power and repetition rates on SC generation (SCG) is explored. Results suggest that this pump source has both the advantages of short-pulse and continuous-wave pumps for SCG.
基金Aeronautic Science Foundation Programof China( 05G53038)
文摘Monodispersed silica microspheres with diameter of 353nm were assembled into photonic crystal in ethanol colloidal suspensions of varied silica volume fraction at different temperature and humidity by means of controllable vertical deposition method. The surface morphology and optical properties were studied by SEM and UV-Vis-NIR. It was found that the high-quality silica colloidal photonic crystals were obtained from ethanol solutions with environment temperature between 45℃ and 55℃, humidity between 66% and 76%, the volume fraction of microspheres is between 0.8% and 1.5%. The ordered close-packed photonic crystal fabricated by controllable vertical deposition method had the two photonic bandgaps in the visible light band and near infrared band.
文摘通过水热-垂直沉积法制备了一种新型的荧光光子晶体薄膜,得到的荧光光子晶体具有鲜艳的色彩和良好的荧光性能.此薄膜在460 nm处有明显的反射峰,在440 nm处有很强的荧光峰.将此荧光光子晶体薄膜作为染料敏化太阳能电池背反射层时,可以将开路电压由0.75 V提高到0.77 V,短路电流由7.64 m A/cm2提高到8 m A/cm2,光电转换效率由4.13%提高到4.23%,可以提高2.42%的光电转换效率.