混响是主动声纳检测的主要背景干扰,由于它是一种非平稳的有色噪声,使得工作在白噪声条件下的检测器性能受到极大限制。在混响背景下实现目标回波检测,常采用自回归(AR)模型对宽带回波预白化处理,但在强混响背景条件下,白化后直接进行...混响是主动声纳检测的主要背景干扰,由于它是一种非平稳的有色噪声,使得工作在白噪声条件下的检测器性能受到极大限制。在混响背景下实现目标回波检测,常采用自回归(AR)模型对宽带回波预白化处理,但在强混响背景条件下,白化后直接进行匹配滤波检测的结果不甚理想。针对此问题,在AR模型预白化基础上,提出一种改进方法,对白化后信号先进行二分奇异值分解(SVD)处理,有效去除大部分混响干扰,然后再作匹配检测。仿真实验分析表明,相比于仅白化后的匹配滤波检测,该方法可提高信混比约3 d B,匹配检测效果得到了明显改善。展开更多
文摘混响是主动声纳检测的主要背景干扰,由于它是一种非平稳的有色噪声,使得工作在白噪声条件下的检测器性能受到极大限制。在混响背景下实现目标回波检测,常采用自回归(AR)模型对宽带回波预白化处理,但在强混响背景条件下,白化后直接进行匹配滤波检测的结果不甚理想。针对此问题,在AR模型预白化基础上,提出一种改进方法,对白化后信号先进行二分奇异值分解(SVD)处理,有效去除大部分混响干扰,然后再作匹配检测。仿真实验分析表明,相比于仅白化后的匹配滤波检测,该方法可提高信混比约3 d B,匹配检测效果得到了明显改善。