PURPOSE: To review the recent developments in the structure and function of Smad proteins. DATA SOURCES: Both Chinese- and English-language literatures were searched using MEDLINE/CD-ROM (1997 - 2000) and the Index of...PURPOSE: To review the recent developments in the structure and function of Smad proteins. DATA SOURCES: Both Chinese- and English-language literatures were searched using MEDLINE/CD-ROM (1997 - 2000) and the Index of Chinese-Language Literature (1997 - 2000). STUDY SELECTION: Data from published articles about TGF-beta signal transduction in recent domestic and foreign literature were selected. DATA EXTRACTION: Data were mainly extracted from 22 articles which are listed in the reference section of this review. RESULTS: Smad proteins mediate signal transduction induced by the TGF-beta superfamily. Based on their structural and functional properties, Smad proteins are divided into three groups. The first group, receptor-regulated Smads (R-Smads), are phosphorylated by activated type I receptors and form heteromeric complexes with the second group of Smads, common mediator Smads (Co-Smads). These Smad complexes translocate into the nucleus to influence gene transcription. Inhibitory Smads (I-Smads) are the third group and these antagonize the activity of R-Smads. In the nucleus, Smads can directly contact Smad-binding elements (SBE) in target gene promoters. Through interaction with different transcription factors, transcriptional co-activators or co-repressors, Smads elicit different effects in various cell types. The aberrance of Smad proteins has been noted in several human disorders such as fibrosis, hypertrophic scarring and cancer. CONCLUSION: The structure of Smads determines their function as transcriptional factors which translocate signals from the cell surface to the nucleus where Smads regulate TGF-beta superfamily-dependent gene expression.展开更多
AIM: The existence and properties of alpha-fetoprotein (AFP) receptor on the surface of NIH 3T3 cells and the effects of AFP on cellular signal transduction pathway were investigated. METHODS: The effect of AFP on the...AIM: The existence and properties of alpha-fetoprotein (AFP) receptor on the surface of NIH 3T3 cells and the effects of AFP on cellular signal transduction pathway were investigated. METHODS: The effect of AFP on the proliferation of NIH 3T3 cells was measured by incorporation of 3H-TdR. Receptor-binding assay of 125I-AFP was performed to detect the properties of AFP receptor in NIH 3T3 cells. The influences of AFP on the [cAMP]i and the activities of protein kinase A (PKA) were determined. Western blot was used to detect the change of K-ras P21 protein expression. RESULTS: The proliferation of NIH 3T3 cells treated with 0-80 mg/L of AFP was significantly enhanced. The Scatchard analysis indicated that there were two classes of binding sites with KD of 2.722 x 10(-9)M (Bmax=12810 sites per cell) and 8.931 x 10(-8)M (Bmax=119700 sites per cell) respectively. In the presence of AFP (20 mg/L), the content of cAMP and activities of PKA were significantly elevated . The level of K-ras P21 protein was upregulated by AFP at the concentration of 20 mg/L. The monoclonal antibody against AFP could reverse the effects of AFP on the cAMP content, PKA activity and the expression of K-ras p21 gene. CONCLUSION: The effect of AFP on the cell proliferation was achieved by binding its receptor to trigger the signal transduction pathway of cAMP-PKA and alter the expression of K- ras p21 gene.展开更多
Cell cycle progression is regulated by interactions between cyclins and cyclin-dependent kinases (CDKs). p21(WAF1) is one of the CIP/KIP family which inhibits CDKs activity. Increased expression of p21(WAF1) may play ...Cell cycle progression is regulated by interactions between cyclins and cyclin-dependent kinases (CDKs). p21(WAF1) is one of the CIP/KIP family which inhibits CDKs activity. Increased expression of p21(WAF1) may play an important role in the growth arrest induced in transformed cells. Although the stability of the p21( WAF1) mRNA could be altered by different signals, cell differentiation and numerous influencing factors. However, recent studies suggest that two known mechanisms of epigenesis, i.e.gene inactivation by methylation in promoter region and changes to an inactive chromatin by histone deacetylation, seem to be the best candidate mechanisms for inactivation of p21( WAF1). To date, almost no coding region p21(WAF1) mutations have been found in tumor cells, despite extensive screening of hundreds of various tumors. Hypermethylation of the p21(WAF1) promoter region may represent an alternative mechanism by which the p21(WAF1/CIP1) gene can be inactivated. The reduction of cellular DNMT protein levels also induces a corresponding rapid increase in the cell cycle regulator p21(WAF1) protein demonstrating a regulatory link between DNMT and p21(WAF1) which is independent of methylation of DNA. Both histone hyperacetylation and hypoacetylation appear to be important in the carcinoma process, and induction of the p21(WAF1) gene by histone hyperacetylation may be a mechanism by which dietary fiber prevents carcinogenesis. Here, we review the influence of histone acetylation and DNA methylation on p21(WAF1) transcription, and affection of pathways or factors associated such as p 53, E2A, Sp1 as well as several histone deacetylation inhibitors.展开更多
AIM: To study the relationship between interleukin-lbeta (IL-1β) up-regulating tissue inhibitor of matrix metalloproteinase-1 (TIMMP-1) mRNA expression and phosphorylation of both c-jun N-terminal kinase (INK)...AIM: To study the relationship between interleukin-lbeta (IL-1β) up-regulating tissue inhibitor of matrix metalloproteinase-1 (TIMMP-1) mRNA expression and phosphorylation of both c-jun N-terminal kinase (INK) and p38 in rat heffatic stellate cells (HSC). METHODS: RT-PCR was performed to measure the expression of TIMMP-1 mRNA in rat HSC. Western blot was performed to measure IL-1β-induced JNK and p38 activities in rat HSC. RESULTS: TIMMP-1 mRNA expression (1.191± 0.079) was much higher after treatment with IL-1β (10 ng/mL) for 24 h than in control group (0.545±0.091) (P〈0.01). IL-1β activated INK and p38 in a time-dependent manner. After stimulation with IL-1β for 0, 5, 15, 30, 60 and 120 min, the INK activity was 0.982±0.299, 1.501±0.720, 2.133±0.882, 3.360±0.452, 2.181±0.789, and 1.385 ± 0.368, respectively. There was a significant difference in JNK activity at 15 min (P〈 0.01), 30 min (P〈 0.01) and 60 min (P〈0.01) in comparison to that at 0 min. The p38 activity was 1.061±0.310, 2.050±0.863, 2.380±0.573, 2.973±0.953, 2.421±0.793, and 1.755 ± 0.433 at the 6 time points (0, 5, 15, 30, 60 and 120 min) respectively. There was a significant difference in p38 activity at 5 min (P〈0.05), 15 min (P〈0.01), 30 min (P〈0.01) and 60 min (P〈0.01) compared to that at 0 min. TIMMP-1 mRNA expression trended to decrease in 3 groups pretreated with different concentrations of SP600125 (10 μmol/L, 1.022±0.113; 20 μmol/L, 0.869±0.070; 40 μmol/L, 0.666±0.123). Their decreases were all significant (P〈0.05, P〈0.01, P〈0.01) in comparison to control group (without SP600125 treatment, 1.163±0.107). In the other 3 groups pretreated with different concentrations of SB203580 (10 μmol/L, 1.507±0.099; 20 μmol/L, 1.698±0.107; 40 μmol/L, 1.857±0.054), the expression of TIMMP-1 mRNA increased. Their levels were higher than those in the control group (without SB203580 treatment, 1.027 ± 0.061) with a si展开更多
AIM: To investigate the role of TR3 in induction of apoptosis in gastric cancer cells. METHODS: Human gastric cancer cell line, MGC80-3, was used. Expression of TR3 mRNA and its protein was detected by Northern blot a...AIM: To investigate the role of TR3 in induction of apoptosis in gastric cancer cells. METHODS: Human gastric cancer cell line, MGC80-3, was used. Expression of TR3 mRNA and its protein was detected by Northern blot and Western blot. Localization of TR3 protein was showed by immunofluorescence analysis under laser-scanning confocal microscope. Apoptotic morphology was observed by DAPI fluorescence staining, and apoptotic index was counted among 1000 cells randomly. Stable transfection assay was carried out by Lipofectamine. RESULTS: Treatment of MGC80-3 cells with TPA and VP-16 resulted in apoptosis, accompanied by the repression of Bcl-2 protein in a time-dependent manner. At the same time, TPA and VP-16 also up-regulated expression level of TR3 mRNA in MGC80-3 cells that expressed TR3 mRNA. When antisense-TR3 expression vector was transfected into the cells, expression of TR3 protein was repressed. In this case, TPA and VP-16 did not induce apoptosis. In addition, TPA and VP-16-induced apoptosis involved in translocation of TR3. In MGC80-3 cells, TR3 localized concentrative in nucleus, after treatment of cells with TPA and VP-16, TR3 translocated from nucleus to cytosol obviously. However, when this nuclear translocation was blocked by LMB, apoptosis was not occurred in MGC80-3 cells even in the presence of TPA and VP-16. CONCLUSION: Induction of apoptosis by TPA and VP-16 is through induction of TR3 expression and translocation of TR3 from nucleus to cytosol, which may be a novel signal pathway for TR3, and represent the new biological function of TR3 to exert its effect on apoptosis in gastric cancer cells.展开更多
基金supported by a grant from the National Natural Science Foundation of China(No.G1999054204); the National Prominent Youth Science Foundation of China(No.39525024).
文摘PURPOSE: To review the recent developments in the structure and function of Smad proteins. DATA SOURCES: Both Chinese- and English-language literatures were searched using MEDLINE/CD-ROM (1997 - 2000) and the Index of Chinese-Language Literature (1997 - 2000). STUDY SELECTION: Data from published articles about TGF-beta signal transduction in recent domestic and foreign literature were selected. DATA EXTRACTION: Data were mainly extracted from 22 articles which are listed in the reference section of this review. RESULTS: Smad proteins mediate signal transduction induced by the TGF-beta superfamily. Based on their structural and functional properties, Smad proteins are divided into three groups. The first group, receptor-regulated Smads (R-Smads), are phosphorylated by activated type I receptors and form heteromeric complexes with the second group of Smads, common mediator Smads (Co-Smads). These Smad complexes translocate into the nucleus to influence gene transcription. Inhibitory Smads (I-Smads) are the third group and these antagonize the activity of R-Smads. In the nucleus, Smads can directly contact Smad-binding elements (SBE) in target gene promoters. Through interaction with different transcription factors, transcriptional co-activators or co-repressors, Smads elicit different effects in various cell types. The aberrance of Smad proteins has been noted in several human disorders such as fibrosis, hypertrophic scarring and cancer. CONCLUSION: The structure of Smads determines their function as transcriptional factors which translocate signals from the cell surface to the nucleus where Smads regulate TGF-beta superfamily-dependent gene expression.
基金This work was supported by National NaturalScience Fundation of China(No.39760077).
文摘AIM: The existence and properties of alpha-fetoprotein (AFP) receptor on the surface of NIH 3T3 cells and the effects of AFP on cellular signal transduction pathway were investigated. METHODS: The effect of AFP on the proliferation of NIH 3T3 cells was measured by incorporation of 3H-TdR. Receptor-binding assay of 125I-AFP was performed to detect the properties of AFP receptor in NIH 3T3 cells. The influences of AFP on the [cAMP]i and the activities of protein kinase A (PKA) were determined. Western blot was used to detect the change of K-ras P21 protein expression. RESULTS: The proliferation of NIH 3T3 cells treated with 0-80 mg/L of AFP was significantly enhanced. The Scatchard analysis indicated that there were two classes of binding sites with KD of 2.722 x 10(-9)M (Bmax=12810 sites per cell) and 8.931 x 10(-8)M (Bmax=119700 sites per cell) respectively. In the presence of AFP (20 mg/L), the content of cAMP and activities of PKA were significantly elevated . The level of K-ras P21 protein was upregulated by AFP at the concentration of 20 mg/L. The monoclonal antibody against AFP could reverse the effects of AFP on the cAMP content, PKA activity and the expression of K-ras p21 gene. CONCLUSION: The effect of AFP on the cell proliferation was achieved by binding its receptor to trigger the signal transduction pathway of cAMP-PKA and alter the expression of K- ras p21 gene.
文摘Cell cycle progression is regulated by interactions between cyclins and cyclin-dependent kinases (CDKs). p21(WAF1) is one of the CIP/KIP family which inhibits CDKs activity. Increased expression of p21(WAF1) may play an important role in the growth arrest induced in transformed cells. Although the stability of the p21( WAF1) mRNA could be altered by different signals, cell differentiation and numerous influencing factors. However, recent studies suggest that two known mechanisms of epigenesis, i.e.gene inactivation by methylation in promoter region and changes to an inactive chromatin by histone deacetylation, seem to be the best candidate mechanisms for inactivation of p21( WAF1). To date, almost no coding region p21(WAF1) mutations have been found in tumor cells, despite extensive screening of hundreds of various tumors. Hypermethylation of the p21(WAF1) promoter region may represent an alternative mechanism by which the p21(WAF1/CIP1) gene can be inactivated. The reduction of cellular DNMT protein levels also induces a corresponding rapid increase in the cell cycle regulator p21(WAF1) protein demonstrating a regulatory link between DNMT and p21(WAF1) which is independent of methylation of DNA. Both histone hyperacetylation and hypoacetylation appear to be important in the carcinoma process, and induction of the p21(WAF1) gene by histone hyperacetylation may be a mechanism by which dietary fiber prevents carcinogenesis. Here, we review the influence of histone acetylation and DNA methylation on p21(WAF1) transcription, and affection of pathways or factors associated such as p 53, E2A, Sp1 as well as several histone deacetylation inhibitors.
文摘AIM: To study the relationship between interleukin-lbeta (IL-1β) up-regulating tissue inhibitor of matrix metalloproteinase-1 (TIMMP-1) mRNA expression and phosphorylation of both c-jun N-terminal kinase (INK) and p38 in rat heffatic stellate cells (HSC). METHODS: RT-PCR was performed to measure the expression of TIMMP-1 mRNA in rat HSC. Western blot was performed to measure IL-1β-induced JNK and p38 activities in rat HSC. RESULTS: TIMMP-1 mRNA expression (1.191± 0.079) was much higher after treatment with IL-1β (10 ng/mL) for 24 h than in control group (0.545±0.091) (P〈0.01). IL-1β activated INK and p38 in a time-dependent manner. After stimulation with IL-1β for 0, 5, 15, 30, 60 and 120 min, the INK activity was 0.982±0.299, 1.501±0.720, 2.133±0.882, 3.360±0.452, 2.181±0.789, and 1.385 ± 0.368, respectively. There was a significant difference in JNK activity at 15 min (P〈 0.01), 30 min (P〈 0.01) and 60 min (P〈0.01) in comparison to that at 0 min. The p38 activity was 1.061±0.310, 2.050±0.863, 2.380±0.573, 2.973±0.953, 2.421±0.793, and 1.755 ± 0.433 at the 6 time points (0, 5, 15, 30, 60 and 120 min) respectively. There was a significant difference in p38 activity at 5 min (P〈0.05), 15 min (P〈0.01), 30 min (P〈0.01) and 60 min (P〈0.01) compared to that at 0 min. TIMMP-1 mRNA expression trended to decrease in 3 groups pretreated with different concentrations of SP600125 (10 μmol/L, 1.022±0.113; 20 μmol/L, 0.869±0.070; 40 μmol/L, 0.666±0.123). Their decreases were all significant (P〈0.05, P〈0.01, P〈0.01) in comparison to control group (without SP600125 treatment, 1.163±0.107). In the other 3 groups pretreated with different concentrations of SB203580 (10 μmol/L, 1.507±0.099; 20 μmol/L, 1.698±0.107; 40 μmol/L, 1.857±0.054), the expression of TIMMP-1 mRNA increased. Their levels were higher than those in the control group (without SB203580 treatment, 1.027 ± 0.061) with a si
基金the National Outstanding Youth Science foundation of China (B type,39825502)the National Natural Science Foundation of China (39880015,30170477)the Natural Science Foundation of Fujian Province (C0110004).
文摘AIM: To investigate the role of TR3 in induction of apoptosis in gastric cancer cells. METHODS: Human gastric cancer cell line, MGC80-3, was used. Expression of TR3 mRNA and its protein was detected by Northern blot and Western blot. Localization of TR3 protein was showed by immunofluorescence analysis under laser-scanning confocal microscope. Apoptotic morphology was observed by DAPI fluorescence staining, and apoptotic index was counted among 1000 cells randomly. Stable transfection assay was carried out by Lipofectamine. RESULTS: Treatment of MGC80-3 cells with TPA and VP-16 resulted in apoptosis, accompanied by the repression of Bcl-2 protein in a time-dependent manner. At the same time, TPA and VP-16 also up-regulated expression level of TR3 mRNA in MGC80-3 cells that expressed TR3 mRNA. When antisense-TR3 expression vector was transfected into the cells, expression of TR3 protein was repressed. In this case, TPA and VP-16 did not induce apoptosis. In addition, TPA and VP-16-induced apoptosis involved in translocation of TR3. In MGC80-3 cells, TR3 localized concentrative in nucleus, after treatment of cells with TPA and VP-16, TR3 translocated from nucleus to cytosol obviously. However, when this nuclear translocation was blocked by LMB, apoptosis was not occurred in MGC80-3 cells even in the presence of TPA and VP-16. CONCLUSION: Induction of apoptosis by TPA and VP-16 is through induction of TR3 expression and translocation of TR3 from nucleus to cytosol, which may be a novel signal pathway for TR3, and represent the new biological function of TR3 to exert its effect on apoptosis in gastric cancer cells.