针对基于平面波声场模型的深海DOA(Direction of Arrival,DOA)估计存在误差的问题,从射线理论出发,建立了多途信道下深海DOA估计的阵列信号模型,推导出了深海多径声线传播时间和相邻阵元声线传播时延差的表征方法,运用解相干DOA估计算法...针对基于平面波声场模型的深海DOA(Direction of Arrival,DOA)估计存在误差的问题,从射线理论出发,建立了多途信道下深海DOA估计的阵列信号模型,推导出了深海多径声线传播时间和相邻阵元声线传播时延差的表征方法,运用解相干DOA估计算法,提高深海DOA估计性能,通过仿真验证了算法的有效性。研究表明,深海DOA估计问题实为多维参数优化问题;充分考虑海洋声场的声传播特性,可以从根本上解决深海DOA估计的误差问题。展开更多
A uniform array of scalar-sensors with intersensor spacings over a large aperture size generally offers enhanced resolution and source localization accuracy,but it may also lead to cyclic ambiguity.By exploiting the p...A uniform array of scalar-sensors with intersensor spacings over a large aperture size generally offers enhanced resolution and source localization accuracy,but it may also lead to cyclic ambiguity.By exploiting the polarization information of impinging waves,an electromagnetic vector-sensor array outperforms the unpolarized scalar-sensor array in resolving this cyclic ambiguity.However,the electromagnetic vector-sensor array usually consists of cocentered orthogonal loops and dipoles(COLD),which is easily subjected to mutual coupling across these cocentered dipoles/loops.As a result,the source localization performance of the COLD array may substantially degrade rather than being improved.This paper proposes a new source localization method with a non-cocentered orthogonal loop and dipole(NCOLD)array.The NCOLD array contains only one dipole or loop on each array grid,and the intersensor spacings are larger than a half-wavelength.Therefore,unlike the COLD array,these well separated dipoles/loops minimize the mutual coupling effects and extend the spatial aperture as well.With the NCOLD array,the proposed method can effciently exploit the polarization information to offer high localization precision.展开更多
文摘针对基于平面波声场模型的深海DOA(Direction of Arrival,DOA)估计存在误差的问题,从射线理论出发,建立了多途信道下深海DOA估计的阵列信号模型,推导出了深海多径声线传播时间和相邻阵元声线传播时延差的表征方法,运用解相干DOA估计算法,提高深海DOA估计性能,通过仿真验证了算法的有效性。研究表明,深海DOA估计问题实为多维参数优化问题;充分考虑海洋声场的声传播特性,可以从根本上解决深海DOA估计的误差问题。
基金supported by the Scientifc Research Fund of Zhejiang Provincial Education Department(No.Y201225848)the Scientifc and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.2013124)
文摘A uniform array of scalar-sensors with intersensor spacings over a large aperture size generally offers enhanced resolution and source localization accuracy,but it may also lead to cyclic ambiguity.By exploiting the polarization information of impinging waves,an electromagnetic vector-sensor array outperforms the unpolarized scalar-sensor array in resolving this cyclic ambiguity.However,the electromagnetic vector-sensor array usually consists of cocentered orthogonal loops and dipoles(COLD),which is easily subjected to mutual coupling across these cocentered dipoles/loops.As a result,the source localization performance of the COLD array may substantially degrade rather than being improved.This paper proposes a new source localization method with a non-cocentered orthogonal loop and dipole(NCOLD)array.The NCOLD array contains only one dipole or loop on each array grid,and the intersensor spacings are larger than a half-wavelength.Therefore,unlike the COLD array,these well separated dipoles/loops minimize the mutual coupling effects and extend the spatial aperture as well.With the NCOLD array,the proposed method can effciently exploit the polarization information to offer high localization precision.