提出了一种适用于闪存的瞬态增强的无片外电容低压差线性稳压器(LDO)。该LDO采用了具有超低输出阻抗的缓冲器驱动功率管和高能效基准方法,缓冲器采用并联反馈技术降低输出电阻以增强功率管栅端的摆率。高能效基准电路在静态模式输出...提出了一种适用于闪存的瞬态增强的无片外电容低压差线性稳压器(LDO)。该LDO采用了具有超低输出阻抗的缓冲器驱动功率管和高能效基准方法,缓冲器采用并联反馈技术降低输出电阻以增强功率管栅端的摆率。高能效基准电路在静态模式输出小基准电流以减少静态功耗,而在工作模式提供大的基准电流以增加闭环带宽和功率管栅端的摆率。设计的LDO应用于采用70 nm闪存工艺制造的、工作电压为2~3.6 V和存储容量为64 M的闪存中。测试结果表明,该LDO输出的调制电压为1.8 V,最大输出电流为40 m A,在没有负载的条件下仅消耗8.5μA的静态电流,在满载电流变化时,用于闪存时仅有20 ns响应时间且最大输出电压变化仅为72 m V,满足高速闪存的要求。展开更多
随着地铁配电系统谐波含量不断增多,并联型有源电力滤波器(shunt active power filter,SAPF)也逐渐取代传统谐波处理装置。建立了αβ坐标系下SAPF中PWM变流器交流侧输出电压与功率之间的数学模型,为了使SAPF在无需精确数学模型条件下...随着地铁配电系统谐波含量不断增多,并联型有源电力滤波器(shunt active power filter,SAPF)也逐渐取代传统谐波处理装置。建立了αβ坐标系下SAPF中PWM变流器交流侧输出电压与功率之间的数学模型,为了使SAPF在无需精确数学模型条件下仍具有良好谐波抑制效果,通过选取变流器交流侧输出功率作为状态变量及系统输出量,交流输出电压为输入控制变量,提出了一种基于微分平坦理论的功率平坦控制策略。控制器设计通过参考轨迹前馈控制和误差反馈补偿等两部分实现,前馈控制根据期望平坦输出及输入控制量与输出变量间的数学关系规划系统控制状态量参考轨迹,误差反馈补偿消除输出实际值与期望值之间误差值。仿真结果表明所提出控制策略的有效性,谐波补偿效果明显,为SAPF功率控制器设计提供了一种新的思路。展开更多
文摘提出了一种适用于闪存的瞬态增强的无片外电容低压差线性稳压器(LDO)。该LDO采用了具有超低输出阻抗的缓冲器驱动功率管和高能效基准方法,缓冲器采用并联反馈技术降低输出电阻以增强功率管栅端的摆率。高能效基准电路在静态模式输出小基准电流以减少静态功耗,而在工作模式提供大的基准电流以增加闭环带宽和功率管栅端的摆率。设计的LDO应用于采用70 nm闪存工艺制造的、工作电压为2~3.6 V和存储容量为64 M的闪存中。测试结果表明,该LDO输出的调制电压为1.8 V,最大输出电流为40 m A,在没有负载的条件下仅消耗8.5μA的静态电流,在满载电流变化时,用于闪存时仅有20 ns响应时间且最大输出电压变化仅为72 m V,满足高速闪存的要求。
文摘随着地铁配电系统谐波含量不断增多,并联型有源电力滤波器(shunt active power filter,SAPF)也逐渐取代传统谐波处理装置。建立了αβ坐标系下SAPF中PWM变流器交流侧输出电压与功率之间的数学模型,为了使SAPF在无需精确数学模型条件下仍具有良好谐波抑制效果,通过选取变流器交流侧输出功率作为状态变量及系统输出量,交流输出电压为输入控制变量,提出了一种基于微分平坦理论的功率平坦控制策略。控制器设计通过参考轨迹前馈控制和误差反馈补偿等两部分实现,前馈控制根据期望平坦输出及输入控制量与输出变量间的数学关系规划系统控制状态量参考轨迹,误差反馈补偿消除输出实际值与期望值之间误差值。仿真结果表明所提出控制策略的有效性,谐波补偿效果明显,为SAPF功率控制器设计提供了一种新的思路。