When the fundamental frequency is shifting, it is hard for traditional repetitive controller to work at the resonant frequencies. In this paper, a novel adaptive repetitive controller for power factor correction syste...When the fundamental frequency is shifting, it is hard for traditional repetitive controller to work at the resonant frequencies. In this paper, a novel adaptive repetitive controller for power factor correction systems is proposed to suppress the current harmonics. Through the controller, the shifting sampling times of the repetitive controller in a fundamental period can be obtained. Mathematical analysis, simulations and physical experiments have validated the effectiveness of the adaptive repetitive controller.展开更多
针对纯电动汽车两挡双离合自动变速器(two-speed dual-clutch transmission,2DCT)换挡控制模型及参数的不确定性和存在的未知干扰,提出了一种线性自抗扰(linear active disturbance rejection controller,LADRC)换挡控制策略。首先建立2...针对纯电动汽车两挡双离合自动变速器(two-speed dual-clutch transmission,2DCT)换挡控制模型及参数的不确定性和存在的未知干扰,提出了一种线性自抗扰(linear active disturbance rejection controller,LADRC)换挡控制策略。首先建立2DCT换挡过程动力学模型,并分析了换挡过程;然后考虑控制模型的不确定性及未知干扰,将LADRC控制器应用到换挡过程对期望角速度进行跟踪,并采用扩张状态观测器(extended state observer,ESO)对扰动进行实时估计,并加以补偿,最后与PID控制进行对比。仿真和实验结果表明,该控制器跟踪误差更小,鲁棒性强,能保证良好的换挡品质。展开更多
基金the National Natural Science Foundation of China(No.61463037)the Technology Project of Education Department of Jiangxi(No.GJJ14531)the Science&Technology Project of Jiangxi(No.2010BGA01000)
文摘When the fundamental frequency is shifting, it is hard for traditional repetitive controller to work at the resonant frequencies. In this paper, a novel adaptive repetitive controller for power factor correction systems is proposed to suppress the current harmonics. Through the controller, the shifting sampling times of the repetitive controller in a fundamental period can be obtained. Mathematical analysis, simulations and physical experiments have validated the effectiveness of the adaptive repetitive controller.
文摘针对纯电动汽车两挡双离合自动变速器(two-speed dual-clutch transmission,2DCT)换挡控制模型及参数的不确定性和存在的未知干扰,提出了一种线性自抗扰(linear active disturbance rejection controller,LADRC)换挡控制策略。首先建立2DCT换挡过程动力学模型,并分析了换挡过程;然后考虑控制模型的不确定性及未知干扰,将LADRC控制器应用到换挡过程对期望角速度进行跟踪,并采用扩张状态观测器(extended state observer,ESO)对扰动进行实时估计,并加以补偿,最后与PID控制进行对比。仿真和实验结果表明,该控制器跟踪误差更小,鲁棒性强,能保证良好的换挡品质。