Based on their differences in physical characteristics and time-space scales,the ocean motions have been divided into four types in the present paper:turbulence,wave-like motion,eddy-like motion and circulation.Apply...Based on their differences in physical characteristics and time-space scales,the ocean motions have been divided into four types in the present paper:turbulence,wave-like motion,eddy-like motion and circulation.Applying the three-fold Reynolds averages to the governing equations with Boussinesq approximation,with the averages defined on the former three sub-systems,we derive the governing equation sets of the four sub-systems and refer to their sum as "the ocean dynamic system".In these equation sets,the interactions among different motions appear in two forms:the first one includes advection transport and shear instability generation of larger scale motions,and the second one is the mixing induced by smaller scale motions in the form of transport flux residue.The governing equation sets are the basis of analytical/numerical descriptions of various ocean processes.展开更多
A laboratory experiment on alongshore currents is conducted for two plane beaches with slopes 1:40 and 1:i00 to investigate the instability of alongshore currents. The dye release experiment is also performed synchr...A laboratory experiment on alongshore currents is conducted for two plane beaches with slopes 1:40 and 1:i00 to investigate the instability of alongshore currents. The dye release experiment is also performed synchronously in surf zone. Complicated and strongly unstable motions of alongshore currents are observed in the experiment. To examine the spatial and temporal variations of the shear instabilities of longshore clearly, dye batches are released in surf zone. The deformation of the dye patch is observed efficiently and effectively with charge coupled device (CCD) system. Some essential characteristics of the shear instability are validated from the results of image analyses of the temporal variation of the dye patch. The influences of alongshore currents, Stokes drift, large-scale vorticity and the shear instabilities on the transport of dye are analyzed using the collected images. The spatial structure of the instabilities of longshore currents is studied by analyzing collected images of the dye patch. And the phase velocity of the meandering movements is obtained through measuring the movement distances of the oscillations of dye patch in alongshore direction with time. The results suggest that the propagation speed of the shear instability is approximately 5070 7570 of maximum of mean alongshore currents for irregular and regular waves. The calculated propagation speed using a linear instability analysis theory is compared with the experimental results. The comparison shows agreements between them.展开更多
A laboratory experiment on the instability of alongshore currents was conducted on a plane beach with slope 1:40. Low-frequency fluctuations of alongshore currents with the period of approximately 100 s were observed...A laboratory experiment on the instability of alongshore currents was conducted on a plane beach with slope 1:40. Low-frequency fluctuations of alongshore currents with the period of approximately 100 s were observed. The dominant frequency and amplitudes of the oscillations of alongshore currents were determined using the maximum entropy method and the regression method of trigonometric function. The variations across the beach cross-section of the oscillation amplitudes of the alongshore current were given. The linear shear instability theory was used to analyze the mechanism of the oscillation, and the calculated results agreed with measurements. This confirms that the observed fluctuation of alongshore currents is due to the shear instability of alongshore currents.展开更多
The linear stability is studied of flows confined between two concentric cylinders, in which the radial temperature gradient and axial gravity are considered for an incompressible Newtonian fluid. Numerical method bas...The linear stability is studied of flows confined between two concentric cylinders, in which the radial temperature gradient and axial gravity are considered for an incompressible Newtonian fluid. Numerical method based on the Petrov-Galerkin scheme is developed to deal with the buoyancy term in momentum equations and an additional temperature perturbation equation. Computations of the neutral stability curves are performed for different rotation cases. It is found that the flow instability is influenced by both centrifugal and axial shear instabilities, and the two instability mechanisms interact with each other. The outer cylinder rotation plays dual roles of stabilizer and destabilizer under different rotating stages with the inner cylinder at rest. For the heat buoyancyinduced axial flow, spiral structures are found in the instability modes.展开更多
On the basis of the time series observations from a temperature chain and an acoustic Doppler current profiler on the continental shelf of the northern South China Sea, a sequence of internal solitary waves (ISWs) a...On the basis of the time series observations from a temperature chain and an acoustic Doppler current profiler on the continental shelf of the northern South China Sea, a sequence of internal solitary waves (ISWs) and background waves (BWs, including internal tides and near-inertial waves) on the continental shelf were captured simultaneously after the transit of Typhoon Neast in October 2011. These measurementsprovided a unique opportunity to explore the influence of BWs on the ISWs. The BWs appeared a conversion on the current strength and vertical mode structure during the observational period. The BWs were dominated by weak and mode-one waves before October 2 and then turned to strong and high-mode waves after that time. Meanwhile, the ISWs displayed different wave structures before and after October 2, which was closely related to BWs' changes. According to the current profiles of BWs, the high-mode wave structure with strong current could significantly strengthen the vertical shear of ISWs in the near-surface layer and promote the breaking of ISWs, and thus it may play an important role in affecting the background current condition.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.40776020,41106032)the National Basic Research Program of China (973 Program,Grant Nos.G1999043800,2006CB403600,2010CB950404 and 2010CB950300)
文摘Based on their differences in physical characteristics and time-space scales,the ocean motions have been divided into four types in the present paper:turbulence,wave-like motion,eddy-like motion and circulation.Applying the three-fold Reynolds averages to the governing equations with Boussinesq approximation,with the averages defined on the former three sub-systems,we derive the governing equation sets of the four sub-systems and refer to their sum as "the ocean dynamic system".In these equation sets,the interactions among different motions appear in two forms:the first one includes advection transport and shear instability generation of larger scale motions,and the second one is the mixing induced by smaller scale motions in the form of transport flux residue.The governing equation sets are the basis of analytical/numerical descriptions of various ocean processes.
基金The National Natural Science Foundation of China under contract Nos 50479053 and 10672034the Program for the Changjiang Scholars and the Innovative Research Team in the University of Chinathe Shanxi Province Natural Science Foundation for Young Scholar of China under contract No.2011021025-1
文摘A laboratory experiment on alongshore currents is conducted for two plane beaches with slopes 1:40 and 1:i00 to investigate the instability of alongshore currents. The dye release experiment is also performed synchronously in surf zone. Complicated and strongly unstable motions of alongshore currents are observed in the experiment. To examine the spatial and temporal variations of the shear instabilities of longshore clearly, dye batches are released in surf zone. The deformation of the dye patch is observed efficiently and effectively with charge coupled device (CCD) system. Some essential characteristics of the shear instability are validated from the results of image analyses of the temporal variation of the dye patch. The influences of alongshore currents, Stokes drift, large-scale vorticity and the shear instabilities on the transport of dye are analyzed using the collected images. The spatial structure of the instabilities of longshore currents is studied by analyzing collected images of the dye patch. And the phase velocity of the meandering movements is obtained through measuring the movement distances of the oscillations of dye patch in alongshore direction with time. The results suggest that the propagation speed of the shear instability is approximately 5070 7570 of maximum of mean alongshore currents for irregular and regular waves. The calculated propagation speed using a linear instability analysis theory is compared with the experimental results. The comparison shows agreements between them.
基金The National Natural Science Foundation of China under contract Nos 50479053 and 10672034
文摘A laboratory experiment on the instability of alongshore currents was conducted on a plane beach with slope 1:40. Low-frequency fluctuations of alongshore currents with the period of approximately 100 s were observed. The dominant frequency and amplitudes of the oscillations of alongshore currents were determined using the maximum entropy method and the regression method of trigonometric function. The variations across the beach cross-section of the oscillation amplitudes of the alongshore current were given. The linear shear instability theory was used to analyze the mechanism of the oscillation, and the calculated results agreed with measurements. This confirms that the observed fluctuation of alongshore currents is due to the shear instability of alongshore currents.
文摘The linear stability is studied of flows confined between two concentric cylinders, in which the radial temperature gradient and axial gravity are considered for an incompressible Newtonian fluid. Numerical method based on the Petrov-Galerkin scheme is developed to deal with the buoyancy term in momentum equations and an additional temperature perturbation equation. Computations of the neutral stability curves are performed for different rotation cases. It is found that the flow instability is influenced by both centrifugal and axial shear instabilities, and the two instability mechanisms interact with each other. The outer cylinder rotation plays dual roles of stabilizer and destabilizer under different rotating stages with the inner cylinder at rest. For the heat buoyancyinduced axial flow, spiral structures are found in the instability modes.
基金The National Nature Science Foundation of China under contract Nos U1133001,41030855 and 2013AA09A502
文摘On the basis of the time series observations from a temperature chain and an acoustic Doppler current profiler on the continental shelf of the northern South China Sea, a sequence of internal solitary waves (ISWs) and background waves (BWs, including internal tides and near-inertial waves) on the continental shelf were captured simultaneously after the transit of Typhoon Neast in October 2011. These measurementsprovided a unique opportunity to explore the influence of BWs on the ISWs. The BWs appeared a conversion on the current strength and vertical mode structure during the observational period. The BWs were dominated by weak and mode-one waves before October 2 and then turned to strong and high-mode waves after that time. Meanwhile, the ISWs displayed different wave structures before and after October 2, which was closely related to BWs' changes. According to the current profiles of BWs, the high-mode wave structure with strong current could significantly strengthen the vertical shear of ISWs in the near-surface layer and promote the breaking of ISWs, and thus it may play an important role in affecting the background current condition.