This paper presents the results of a 2017 study conducted by the National Institute for Occupational Safety and Health(NIOSH), Pittsburgh Mining Research Division(PMRD), to evaluate the effects of longwall-induced sub...This paper presents the results of a 2017 study conducted by the National Institute for Occupational Safety and Health(NIOSH), Pittsburgh Mining Research Division(PMRD), to evaluate the effects of longwall-induced subsurface deformations within a longwall abutment pillar under deep cover. The 2017 study was conducted in a southwestern Pennsylvania coal mine, which extracts 457 m-wide longwall panels under 361 m of cover. One 198 m-deep, in-place inclinometer monitoring well was drilled and installed over a 45 m by 84 m center abutment pillar. In addition to the monitoring well, surface subsidence measurements and underground coal pillar pressure measurements were conducted as the 457 m-wide longwall panel on the south side of the abutment pillar was being mined. Prior to the first longwall excavation, a number of simulations using FLAC3D^(TM) were conducted to estimate surface subsidence, increases in underground coal pillar pressure, and subsurface horizontal displacements in the monitoring well. Comparisons of the pre-mining FLAC3D simulation results and the surface, subsurface,and underground instrumentation results show that the measured in-place inclinometer casing deformations are in reasonable agreement with those predicted by the 3D finite difference models. The measured surface subsidence and pillar pressure are in excellent agreement with those predicted by the 3D models.Results from this 2017 research clearly indicate that, under deep cover, the measured horizontal displacements within the abutment pillar are approximately one order of magnitude smaller than those measured in a 2014 study under medium cover.展开更多
The analysis of wellbore stability in deepwater gas wells is vital for effective drilling operations, especially in deepwater remote areas and for modern drilling technologies. Wellbore stability problems usually occu...The analysis of wellbore stability in deepwater gas wells is vital for effective drilling operations, especially in deepwater remote areas and for modern drilling technologies. Wellbore stability problems usually occur when drilling through hydrocarbon formations such as shale, unconsolidated sandstone, fractured carbonate formations and HPHT formations with narrow safety mud window. These problems can significantly affect drilling time, costs and the whole drilling operations. In deepwater gas wells, there is also the possible of gas hydrate problems because of the low temperature and high pressure conditions of the environment as well as the coexistence of gas and water inside the wellbore. These hydrates can block the mud line, surface choke line and even the BOP stack if no hydrate preventive measures are considered. In addition, the dissociation of these hydrates in the wellbore may gasify the drilling fluid and reduce drilling mud density, hydrostatic pressure, change mud rheology and cause wellbore instabilities. Traditional wellbore stability analysis considered the formation to be isotropic and assumed that the rock mechanical properties are independent of in-situ stress direction. This assumption is invalid for formations with layers or natural fractures because the presence of these geological features will influence rock anisotropic properties, wellbore stress concentration and failure behavior. This is a complicated phenomenon because the stress distribution around a wellbore is affected by factors such as rock properties, far-field principal stresses, wellbore trajectory, formation pore pressure, reservoir and drilling fluids properties and time. This research work reviews the major causes of wellbore stability problems in deepwater gas wells and outlines different preventive measures for effective drilling operation, because real-time monitoring of drilling process can provide necessary information for solving any wellbore stability problems in a short time.展开更多
文摘This paper presents the results of a 2017 study conducted by the National Institute for Occupational Safety and Health(NIOSH), Pittsburgh Mining Research Division(PMRD), to evaluate the effects of longwall-induced subsurface deformations within a longwall abutment pillar under deep cover. The 2017 study was conducted in a southwestern Pennsylvania coal mine, which extracts 457 m-wide longwall panels under 361 m of cover. One 198 m-deep, in-place inclinometer monitoring well was drilled and installed over a 45 m by 84 m center abutment pillar. In addition to the monitoring well, surface subsidence measurements and underground coal pillar pressure measurements were conducted as the 457 m-wide longwall panel on the south side of the abutment pillar was being mined. Prior to the first longwall excavation, a number of simulations using FLAC3D^(TM) were conducted to estimate surface subsidence, increases in underground coal pillar pressure, and subsurface horizontal displacements in the monitoring well. Comparisons of the pre-mining FLAC3D simulation results and the surface, subsurface,and underground instrumentation results show that the measured in-place inclinometer casing deformations are in reasonable agreement with those predicted by the 3D finite difference models. The measured surface subsidence and pillar pressure are in excellent agreement with those predicted by the 3D models.Results from this 2017 research clearly indicate that, under deep cover, the measured horizontal displacements within the abutment pillar are approximately one order of magnitude smaller than those measured in a 2014 study under medium cover.
文摘The analysis of wellbore stability in deepwater gas wells is vital for effective drilling operations, especially in deepwater remote areas and for modern drilling technologies. Wellbore stability problems usually occur when drilling through hydrocarbon formations such as shale, unconsolidated sandstone, fractured carbonate formations and HPHT formations with narrow safety mud window. These problems can significantly affect drilling time, costs and the whole drilling operations. In deepwater gas wells, there is also the possible of gas hydrate problems because of the low temperature and high pressure conditions of the environment as well as the coexistence of gas and water inside the wellbore. These hydrates can block the mud line, surface choke line and even the BOP stack if no hydrate preventive measures are considered. In addition, the dissociation of these hydrates in the wellbore may gasify the drilling fluid and reduce drilling mud density, hydrostatic pressure, change mud rheology and cause wellbore instabilities. Traditional wellbore stability analysis considered the formation to be isotropic and assumed that the rock mechanical properties are independent of in-situ stress direction. This assumption is invalid for formations with layers or natural fractures because the presence of these geological features will influence rock anisotropic properties, wellbore stress concentration and failure behavior. This is a complicated phenomenon because the stress distribution around a wellbore is affected by factors such as rock properties, far-field principal stresses, wellbore trajectory, formation pore pressure, reservoir and drilling fluids properties and time. This research work reviews the major causes of wellbore stability problems in deepwater gas wells and outlines different preventive measures for effective drilling operation, because real-time monitoring of drilling process can provide necessary information for solving any wellbore stability problems in a short time.