Using a classical ensemble method, we have investigated sequential double ionization (SDI) of Ar atoms driven by elliptical laser pulses. The results show that the ion momentum distribution of the Ar atoms depends str...Using a classical ensemble method, we have investigated sequential double ionization (SDI) of Ar atoms driven by elliptical laser pulses. The results show that the ion momentum distribution of the Ar atoms depends strongly on the pulse duration. As the pulse duration increases, the ion momentum distribution changes from two bands to four bands and then to six bands and finally to an eight-band structure. Back analysis of double ionization trajectories shows that the variation of the band structure originates from pulse duration dependent multiple ionization bursts of the second electron. Our calculations indicate that the subcycle electron emission in the SDI could be more easily accessed by using elliptical laser pulses with a longer wavelength. Moreover, we show that there is good correspondence between the scaled radial momentum and the ionization time.展开更多
The effect of initial longitudinal velocity of the tunnelled electron on the non-sequential double ionization (NSDI) process in an elliptically polarized laser field is studied by a semiclassical model. We find that...The effect of initial longitudinal velocity of the tunnelled electron on the non-sequential double ionization (NSDI) process in an elliptically polarized laser field is studied by a semiclassical model. We find that the non-zero initial longitudinal velocity has a suppressing effect on single-return collision (SRC) events in the double ionization process, more specifically, it results in an obvious reduction in the center part of the correlation momentum distributions in the direction of the major polarization axis (z axis) and makes the distribution of single-return collision in the minor polarization axis (x axis) become narrower.展开更多
By using a two-dimensional Monte-Carlo classical ensemble method, we investigate the double ionization(DI) process of the CS_2 molecule with different bond lengths in an 800-nm intense laser field. The double ioniza...By using a two-dimensional Monte-Carlo classical ensemble method, we investigate the double ionization(DI) process of the CS_2 molecule with different bond lengths in an 800-nm intense laser field. The double ionization probability presents a "knee" structure with equilibrium internuclear distance R = 2.9245 a.u.(a.u. is short for atomic unit). As the bond length of CS increases, the DI probability is enhanced and the "knee" structure becomes less obvious. In addition,the momentum distribution of double ionized electrons is also investigated, which shows the momentum mostly distributed in the first and third quadrants with equilibrium internuclear distance R = 2.9245 a.u. As the bond length of CS increases,the electron momentum becomes evenly distributed in the four quadrants. Furthermore, the energy distributions and the corresponding trajectories of the double-ionized electrons versus time are also demonstrated, which show that the bond length of CS in the CS_2 molecule plays a key role in the DI process.展开更多
文摘Using a classical ensemble method, we have investigated sequential double ionization (SDI) of Ar atoms driven by elliptical laser pulses. The results show that the ion momentum distribution of the Ar atoms depends strongly on the pulse duration. As the pulse duration increases, the ion momentum distribution changes from two bands to four bands and then to six bands and finally to an eight-band structure. Back analysis of double ionization trajectories shows that the variation of the band structure originates from pulse duration dependent multiple ionization bursts of the second electron. Our calculations indicate that the subcycle electron emission in the SDI could be more easily accessed by using elliptical laser pulses with a longer wavelength. Moreover, we show that there is good correspondence between the scaled radial momentum and the ionization time.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11074026 and 11074155)the Program for New Century Excellent Talents in University of the Ministry of Education of China (Grant No. NCET-08-0883)
文摘The effect of initial longitudinal velocity of the tunnelled electron on the non-sequential double ionization (NSDI) process in an elliptically polarized laser field is studied by a semiclassical model. We find that the non-zero initial longitudinal velocity has a suppressing effect on single-return collision (SRC) events in the double ionization process, more specifically, it results in an obvious reduction in the center part of the correlation momentum distributions in the direction of the major polarization axis (z axis) and makes the distribution of single-return collision in the minor polarization axis (x axis) become narrower.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574117 and11604131)
文摘By using a two-dimensional Monte-Carlo classical ensemble method, we investigate the double ionization(DI) process of the CS_2 molecule with different bond lengths in an 800-nm intense laser field. The double ionization probability presents a "knee" structure with equilibrium internuclear distance R = 2.9245 a.u.(a.u. is short for atomic unit). As the bond length of CS increases, the DI probability is enhanced and the "knee" structure becomes less obvious. In addition,the momentum distribution of double ionized electrons is also investigated, which shows the momentum mostly distributed in the first and third quadrants with equilibrium internuclear distance R = 2.9245 a.u. As the bond length of CS increases,the electron momentum becomes evenly distributed in the four quadrants. Furthermore, the energy distributions and the corresponding trajectories of the double-ionized electrons versus time are also demonstrated, which show that the bond length of CS in the CS_2 molecule plays a key role in the DI process.
基金supported by the projects of State Key Development Program for Basic Research of China (2007CB814800, 2007CB815103) Natural Science Foundation of China (61078025, 10725521, 10821062 and 10634020)