We use the method of lower and upper solutions combined with monotone iterations to differential problems with a parameter. Existence of extremal solutions to such problems is proved.
The sequence of negatively associated random variables (r.v.’s) are widely used in thereliability theory and multivariate statistical analysis, so it is significant to investigate thelimit properties of those sequences.
We characterize a class of piecewise linear spectral sequences. Associated with the spectral sequence, we construct an orthonormal exponential bases for L2([0,1)d), which are called generalized Fourier bases. Moreo...We characterize a class of piecewise linear spectral sequences. Associated with the spectral sequence, we construct an orthonormal exponential bases for L2([0,1)d), which are called generalized Fourier bases. Moreover, we investigate the convergence of Bochner-Riesz means of the generalized Fourier series.展开更多
该文通过研究无穷序列加速收敛方法 ,在 L evin t-变换的基础上 ,考虑了L evin t-变换的迭代过程 ,提出了 L evin t-变换迭代法 ,指出了这种方法能加快序列的收敛速度 ,给出了理论证明 ,并且通过具体实例给予了证实。同时 ,此法形成了...该文通过研究无穷序列加速收敛方法 ,在 L evin t-变换的基础上 ,考虑了L evin t-变换的迭代过程 ,提出了 L evin t-变换迭代法 ,指出了这种方法能加快序列的收敛速度 ,给出了理论证明 ,并且通过具体实例给予了证实。同时 ,此法形成了循环加速的过程 ,适合于在计算机上进行计算 ,从而在实际应用中具有明显的优越性。对于交错级数部分和序列的加速收敛 。展开更多
文摘We use the method of lower and upper solutions combined with monotone iterations to differential problems with a parameter. Existence of extremal solutions to such problems is proved.
基金Project supported by the National Natural Science Foundation of China the Doctoral Program Foundation of Institute of Higher Education.
文摘The sequence of negatively associated random variables (r.v.’s) are widely used in thereliability theory and multivariate statistical analysis, so it is significant to investigate thelimit properties of those sequences.
基金supported by Science and Technology Research Project of Jilin Provincial Department of Education of China (Grant No. 2011175)supported by National Natural Science Foundation of China (Grant Nos. 11071250 and 11126149),supported by National Natural Science Foundation of China (Grant Nos. 11071250 and 11271162)Guangdong Provincial Government of China through the "Computational Science Innovative Research Team" program
文摘We characterize a class of piecewise linear spectral sequences. Associated with the spectral sequence, we construct an orthonormal exponential bases for L2([0,1)d), which are called generalized Fourier bases. Moreover, we investigate the convergence of Bochner-Riesz means of the generalized Fourier series.
文摘该文通过研究无穷序列加速收敛方法 ,在 L evin t-变换的基础上 ,考虑了L evin t-变换的迭代过程 ,提出了 L evin t-变换迭代法 ,指出了这种方法能加快序列的收敛速度 ,给出了理论证明 ,并且通过具体实例给予了证实。同时 ,此法形成了循环加速的过程 ,适合于在计算机上进行计算 ,从而在实际应用中具有明显的优越性。对于交错级数部分和序列的加速收敛 。