A non-linear non-ideal model, taking into account non-linear competitive isotherms, axial dispersion, film mass transfer, intraparticle diffusion, and port periodic switching, was developed to simulate the dynamics of...A non-linear non-ideal model, taking into account non-linear competitive isotherms, axial dispersion, film mass transfer, intraparticle diffusion, and port periodic switching, was developed to simulate the dynamics of simulated moving bed chromatography (SMBC). The model equations were solved by a new efficient numerical technique of orthogonal collocation on finite elements with periodical movement of concentration vector. The simulated SMBC performance is in accordance with the experimental results reported in the literature for separation of l,1'-bi-2-naphthol enantiomers using SMBC. This model is useful for design, operation, optimization and scale-up of non-linear SMBC for chiral separations with significant non-ideal effects, especially for high solute concentration and small intraparticle diffusion coefficient or large chiral stationary phase particle.展开更多
Inlet configuration is important parameter of hydrocyclones,which has great impact on the classification performance.The effects of inlet configuration on the precise classification were studied by computational fluid...Inlet configuration is important parameter of hydrocyclones,which has great impact on the classification performance.The effects of inlet configuration on the precise classification were studied by computational fluid dynamics under variouscombinations of inlet diameter and inlet velocity.The results showed that a high sharpness of classification was achieved withspecific inlet diameter and inlet velocity.The separation efficiency of the coarse particles by underflow significantly decreased wheninlet had an oversize diameter owing to a stronger short-circuit flow.It is resulted from the chaotic flow and the stronger pressuregradient around the vortex finder.Meanwhile,a low separation efficiency of the fine particles by overflow was achieved when inletvelocity was high,which indicated a low sharpness caused by the overlarge centrifugal force.展开更多
基金Supported by the National Natural Science Foundation of China(No.20206027)and the Natural Science Foundation of Zhejiang Province(No.202046).
文摘A non-linear non-ideal model, taking into account non-linear competitive isotherms, axial dispersion, film mass transfer, intraparticle diffusion, and port periodic switching, was developed to simulate the dynamics of simulated moving bed chromatography (SMBC). The model equations were solved by a new efficient numerical technique of orthogonal collocation on finite elements with periodical movement of concentration vector. The simulated SMBC performance is in accordance with the experimental results reported in the literature for separation of l,1'-bi-2-naphthol enantiomers using SMBC. This model is useful for design, operation, optimization and scale-up of non-linear SMBC for chiral separations with significant non-ideal effects, especially for high solute concentration and small intraparticle diffusion coefficient or large chiral stationary phase particle.
基金Project(2011AA06A107)supported by the National High Technology Research and Development Program of ChinaProject(2014M551348)supported by China Postdoctoral Science FoundationProject(51504098)supported by the National Natural Science Foundation of China
文摘Inlet configuration is important parameter of hydrocyclones,which has great impact on the classification performance.The effects of inlet configuration on the precise classification were studied by computational fluid dynamics under variouscombinations of inlet diameter and inlet velocity.The results showed that a high sharpness of classification was achieved withspecific inlet diameter and inlet velocity.The separation efficiency of the coarse particles by underflow significantly decreased wheninlet had an oversize diameter owing to a stronger short-circuit flow.It is resulted from the chaotic flow and the stronger pressuregradient around the vortex finder.Meanwhile,a low separation efficiency of the fine particles by overflow was achieved when inletvelocity was high,which indicated a low sharpness caused by the overlarge centrifugal force.