By examining the two neighboring Haihe Bridges with semi-and full-closed bridge decks,the aerodynamic interference between the two decks on the vortex-induced vibration(VIV)and the corresponding aerodynamic mitigation...By examining the two neighboring Haihe Bridges with semi-and full-closed bridge decks,the aerodynamic interference between the two decks on the vortex-induced vibration(VIV)and the corresponding aerodynamic mitigation measures are investigated via a series of wind tunnel tests with a spring-suspended sectional model aided with computational fluid dynamics(CFD)method.The results show that the VIV responses of both bridges can be significantly affected by the aerodynamic interference and that the extent of the influence varies with the shapes of the windward and leeward decks.The VIV amplitudes of the windward bridge are often fairly close to those of the single bridge.However,those of the leeward bridge are magnified substantially by aerodynamic interference if the same structural and aerodynamic configurations are adopted for the two bridges.Otherwise,the VIV responses are not significantly increased and may even be reduced by the aerodynamic interference if different configurations are employed for the two bridges.Furthermore,an effective combined measure of adding wind barriers and sharpening the wind fairing noses of the two box decks is presented for mitigating both the vertical and torsional VIV responses of the windward and leeward bridges.展开更多
Numerical simulations were performed on the massively separated flows of a 76/40° double delta wing using detached-eddy simulation(DES).A new type of cross-flow vortex is suggested.A vortex was initially generate...Numerical simulations were performed on the massively separated flows of a 76/40° double delta wing using detached-eddy simulation(DES).A new type of cross-flow vortex is suggested.A vortex was initially generated near the junction of the strake and wing,which then moved towards the wing tip at certain wavelength and speed.Analyses were made in detail on the mechanism of the generation of the cross-flow vortex,that is,the inviscid cross-flow instability which differs from that of the swept blunt wing.Cross-section topology of the cross-flow vortex is also investigated,and the wavelength of the vortex array and the characteristic frequency are given.The analyses showed that the cross-flow vortices have an influence on the pressure distribution,which can cause a 10%-20% deviation from the averaged distribution.展开更多
A series of experiments are performed in a gravitational low-speed water tunnel to investigate the influence of the hydrophobic coating on the flow past a circular cylinder. The mean velocity and turbulence intensity ...A series of experiments are performed in a gravitational low-speed water tunnel to investigate the influence of the hydrophobic coating on the flow past a circular cylinder. The mean velocity and turbulence intensity profiles behind the cylinders are measured using the hot-film anemometer while the separation angles are obtained with the flow visualization technology. For the Reynolds number lower than 3 800, the hydrophobic coatings are in the Cassie state, the velocity deficit and the turbulence intensity in the wake of the hydrophobic cylinders are lower than those of the smooth cylinders which implies the drag reduction effect of the hydrophobic coatings. When the Reynolds number becomes higher than 6 600, the hydrophobic coatings turn into the Wenzel state. Through decomposing the velocity data in the turbulent wake into different scales based on the orthogonal wavelet transform, it is found that the total turbulence intensity in the wake of the hydrophobic cylinders becomes almost the same as in the wake of the smooth cylinders while the intensity of the large scales of vortex components in the wake of the hydrophobic cylinders is still lower. Furthermore, the separation angles show the same trend as a function of the Reynolds number but always take smaller values for the hydrophobic cylinders.展开更多
A new hybrid model, which is based on domain decomposition and proposed by the authors is used for calculating the flow around a circular cylinder at low and middle Keulegan-Carpenter numbers (Kc=2~18)respectively.Th...A new hybrid model, which is based on domain decomposition and proposed by the authors is used for calculating the flow around a circular cylinder at low and middle Keulegan-Carpenter numbers (Kc=2~18)respectively.The vortex motion patterns in asymmetric regime,single pair(or transverse)regime and double pair(or diagonal)regime are successfully simulated.The calculated drag and inertial force coefficients are in better agreement with experimental data than other recent computational results.展开更多
基金The work was supported by the Ministry of Science and Technology of China through the Fundamental Research Fund for State Key Laboratories(Grant No.SLDRCE08-A-02)the National Nature Science Foundation of China(Grant No.50978204).
文摘By examining the two neighboring Haihe Bridges with semi-and full-closed bridge decks,the aerodynamic interference between the two decks on the vortex-induced vibration(VIV)and the corresponding aerodynamic mitigation measures are investigated via a series of wind tunnel tests with a spring-suspended sectional model aided with computational fluid dynamics(CFD)method.The results show that the VIV responses of both bridges can be significantly affected by the aerodynamic interference and that the extent of the influence varies with the shapes of the windward and leeward decks.The VIV amplitudes of the windward bridge are often fairly close to those of the single bridge.However,those of the leeward bridge are magnified substantially by aerodynamic interference if the same structural and aerodynamic configurations are adopted for the two bridges.Otherwise,the VIV responses are not significantly increased and may even be reduced by the aerodynamic interference if different configurations are employed for the two bridges.Furthermore,an effective combined measure of adding wind barriers and sharpening the wind fairing noses of the two box decks is presented for mitigating both the vertical and torsional VIV responses of the windward and leeward bridges.
基金sponsored by the National Natural Science Foundation of China (Grant No. 91016001)
文摘Numerical simulations were performed on the massively separated flows of a 76/40° double delta wing using detached-eddy simulation(DES).A new type of cross-flow vortex is suggested.A vortex was initially generated near the junction of the strake and wing,which then moved towards the wing tip at certain wavelength and speed.Analyses were made in detail on the mechanism of the generation of the cross-flow vortex,that is,the inviscid cross-flow instability which differs from that of the swept blunt wing.Cross-section topology of the cross-flow vortex is also investigated,and the wavelength of the vortex array and the characteristic frequency are given.The analyses showed that the cross-flow vortices have an influence on the pressure distribution,which can cause a 10%-20% deviation from the averaged distribution.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51679203,51879218)
文摘A series of experiments are performed in a gravitational low-speed water tunnel to investigate the influence of the hydrophobic coating on the flow past a circular cylinder. The mean velocity and turbulence intensity profiles behind the cylinders are measured using the hot-film anemometer while the separation angles are obtained with the flow visualization technology. For the Reynolds number lower than 3 800, the hydrophobic coatings are in the Cassie state, the velocity deficit and the turbulence intensity in the wake of the hydrophobic cylinders are lower than those of the smooth cylinders which implies the drag reduction effect of the hydrophobic coatings. When the Reynolds number becomes higher than 6 600, the hydrophobic coatings turn into the Wenzel state. Through decomposing the velocity data in the turbulent wake into different scales based on the orthogonal wavelet transform, it is found that the total turbulence intensity in the wake of the hydrophobic cylinders becomes almost the same as in the wake of the smooth cylinders while the intensity of the large scales of vortex components in the wake of the hydrophobic cylinders is still lower. Furthermore, the separation angles show the same trend as a function of the Reynolds number but always take smaller values for the hydrophobic cylinders.
基金The project supported by the National Natural Science Foundations of China the LNM,Institute of Mechanics,Academia Sinica
文摘A new hybrid model, which is based on domain decomposition and proposed by the authors is used for calculating the flow around a circular cylinder at low and middle Keulegan-Carpenter numbers (Kc=2~18)respectively.The vortex motion patterns in asymmetric regime,single pair(or transverse)regime and double pair(or diagonal)regime are successfully simulated.The calculated drag and inertial force coefficients are in better agreement with experimental data than other recent computational results.