Background: Liquid-based cytology (LBC) offers an alternative method to biopsy in screening endometrial cancer. Cell block (CB), prepared by collecting residual cytological specimen, represents a novel method to ...Background: Liquid-based cytology (LBC) offers an alternative method to biopsy in screening endometrial cancer. Cell block (CB), prepared by collecting residual cytological specimen, represents a novel method to supplement the diagnosis of endometrial cytology. This study aimed to compare the specimen adequacy and diagnostic accuracy of LBC and CB in the diagnosis of endometrial lesions. Methods: A total of 198 women with high risks of endometrial carcinoma (EC) from May 2014 to April 2015 were enrolled in this study. The cytological specimens were collected by the endometrial sampler (SAP-1 ) followed by histopathologic evaluation of dilatation and curettage or biopsy guided by hysteroscopy. The residual cytological specimens were processed into paraffin-embedded CB after LBC preparation. Diagnostic accuracies of LBC and CB for detecting endometrial lesions were correlated with histological diagnoses. Chi-square test was used to compare the specimen adequacies of LBC and CB. Results: The specimen inadequate rate of CB was significantly higher than that of LBC (22.2% versus 7.1%, P 〈 0.01). There were 144 cases with adequate specimens for LBC and CB preparation. Among them, 29 cases were atypical endometrial hyperplasia ( 11 cases) or carcinoma (18 cases) confirmed by histology evaluation. Taking atypical hyperplasia and carcinoma as positive, the diagnostic accuracy of CB was 95.1% while it was 93.8% in LBC. When combined LBC with CB, the diagnostic accuracy was improved to 95.8%, with a sensitivity of 89.7% and specificity of 97.4%. Conclusions: CB is a feasible and reproducible adjuvant method for screening endometrial lesions. A combination of CB and LBC can improve the diagnostic accuracy of endometrial lesions.展开更多
In model-based climate sensitivity studies, model errors may grow during continuous long-term inte- grations in both the "reference" and "perturbed" states and hence the climate sensitivity (defined as the differ...In model-based climate sensitivity studies, model errors may grow during continuous long-term inte- grations in both the "reference" and "perturbed" states and hence the climate sensitivity (defined as the difference between the two states). To reduce the errors, we propose a piecewise modeling approach that splits the continuous long-term simulation into subintervals of sequential short-term simulations, and updates the modeled states through re-initialization at the end of each subinterval. In the re-initialization processes, this approach updates the reference state with analysis data and updates the perturbed states with the sum of analysis data and the difference between the perturbed and the reference states, thereby improving the credibility of the modeled climate sensitivity. We conducted a series of experiments with a shallow-water model to evaluate the advantages of the piecewise approach over the conventional continuous modeling approach. We then investigated the impacts of analysis data error and subinterval length used in the piecewise approach on the simulations of the reference and perturbed states as well as the resulting climate sensitivity. The experiments show that the piecewise approach reduces the errors produced by the conventional continuous modeling approach, more effectively when the analysis data error becomes smaller and the subinterval length is shorter. In addition, we employed a nudging assimilation technique to solve possible spin-up problems caused by re-initializations by using analysis data that contain inconsistent errors between mass and velocity. The nudging technique can effectively diminish the spin-up problem, resulting in a higher modeling skill.展开更多
Nanotechnology has played an influential role in improving the energetic content without subsiding the performance of high energy materials in the current era.In this work,HMX(octahydro-1,3,5,7-tetranitro-1,3,5,7-tetr...Nanotechnology has played an influential role in improving the energetic content without subsiding the performance of high energy materials in the current era.In this work,HMX(octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine)nanoparticles were prepared by sonochemically assisted solvent-antisolvent spray technique focussing the reduction in its size so as to improve its energetic properties.In order to fabricate nano HMX various parameters such as different solvents and temperature were investigated.Sonication is one of the strategies recently explored in this regard;so time dependent study of sonication using probe sonicator was performed.It has been postulated that bubble formed during sonication when collapses generate high temperature and many nucleation sites which leads to the formation of uniform spherical particles with small size and fast transition phase.XRD studies depicted phase transformation from a toβas a result of sonication.The TEM images revealed that the rise in the sonication time resulted into decrease in the particle size from 300 to 10 nm.Differential scanning calorimetry(DSC)was employed to determine the heat release of the samples and enhancement in the heat release with the decrease in the particle size.A decrease in the spark sensitivity was observed from 2 J(regular HMX)to 50 mJ(nano HMX).展开更多
文摘Background: Liquid-based cytology (LBC) offers an alternative method to biopsy in screening endometrial cancer. Cell block (CB), prepared by collecting residual cytological specimen, represents a novel method to supplement the diagnosis of endometrial cytology. This study aimed to compare the specimen adequacy and diagnostic accuracy of LBC and CB in the diagnosis of endometrial lesions. Methods: A total of 198 women with high risks of endometrial carcinoma (EC) from May 2014 to April 2015 were enrolled in this study. The cytological specimens were collected by the endometrial sampler (SAP-1 ) followed by histopathologic evaluation of dilatation and curettage or biopsy guided by hysteroscopy. The residual cytological specimens were processed into paraffin-embedded CB after LBC preparation. Diagnostic accuracies of LBC and CB for detecting endometrial lesions were correlated with histological diagnoses. Chi-square test was used to compare the specimen adequacies of LBC and CB. Results: The specimen inadequate rate of CB was significantly higher than that of LBC (22.2% versus 7.1%, P 〈 0.01). There were 144 cases with adequate specimens for LBC and CB preparation. Among them, 29 cases were atypical endometrial hyperplasia ( 11 cases) or carcinoma (18 cases) confirmed by histology evaluation. Taking atypical hyperplasia and carcinoma as positive, the diagnostic accuracy of CB was 95.1% while it was 93.8% in LBC. When combined LBC with CB, the diagnostic accuracy was improved to 95.8%, with a sensitivity of 89.7% and specificity of 97.4%. Conclusions: CB is a feasible and reproducible adjuvant method for screening endometrial lesions. A combination of CB and LBC can improve the diagnostic accuracy of endometrial lesions.
基金Supported by the National Natural Science Foundation of China(41330527 and 41275102)Fundamental Research Funds for the Central Universities(lzujbky-2013-k16)Program for New Century Excellent Talents in Universities(NCET-11-0213)
文摘In model-based climate sensitivity studies, model errors may grow during continuous long-term inte- grations in both the "reference" and "perturbed" states and hence the climate sensitivity (defined as the difference between the two states). To reduce the errors, we propose a piecewise modeling approach that splits the continuous long-term simulation into subintervals of sequential short-term simulations, and updates the modeled states through re-initialization at the end of each subinterval. In the re-initialization processes, this approach updates the reference state with analysis data and updates the perturbed states with the sum of analysis data and the difference between the perturbed and the reference states, thereby improving the credibility of the modeled climate sensitivity. We conducted a series of experiments with a shallow-water model to evaluate the advantages of the piecewise approach over the conventional continuous modeling approach. We then investigated the impacts of analysis data error and subinterval length used in the piecewise approach on the simulations of the reference and perturbed states as well as the resulting climate sensitivity. The experiments show that the piecewise approach reduces the errors produced by the conventional continuous modeling approach, more effectively when the analysis data error becomes smaller and the subinterval length is shorter. In addition, we employed a nudging assimilation technique to solve possible spin-up problems caused by re-initializations by using analysis data that contain inconsistent errors between mass and velocity. The nudging technique can effectively diminish the spin-up problem, resulting in a higher modeling skill.
基金ER&IPR,DRDO,New Delhi for funding the project “DRDO-DIAT Programme on Nanomaterials”
文摘Nanotechnology has played an influential role in improving the energetic content without subsiding the performance of high energy materials in the current era.In this work,HMX(octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine)nanoparticles were prepared by sonochemically assisted solvent-antisolvent spray technique focussing the reduction in its size so as to improve its energetic properties.In order to fabricate nano HMX various parameters such as different solvents and temperature were investigated.Sonication is one of the strategies recently explored in this regard;so time dependent study of sonication using probe sonicator was performed.It has been postulated that bubble formed during sonication when collapses generate high temperature and many nucleation sites which leads to the formation of uniform spherical particles with small size and fast transition phase.XRD studies depicted phase transformation from a toβas a result of sonication.The TEM images revealed that the rise in the sonication time resulted into decrease in the particle size from 300 to 10 nm.Differential scanning calorimetry(DSC)was employed to determine the heat release of the samples and enhancement in the heat release with the decrease in the particle size.A decrease in the spark sensitivity was observed from 2 J(regular HMX)to 50 mJ(nano HMX).