We investigate the sensitivity enhancement of surface plasmon resonance (SPR) sensors through planar metallic film closely coupled to nanogratings. The effects of the thickness of metallic film and grating period on...We investigate the sensitivity enhancement of surface plasmon resonance (SPR) sensors through planar metallic film closely coupled to nanogratings. The effects of the thickness of metallic film and grating period on the refractive index sensitivity of the device are analyzed in detail. The refractive index sensitivity of nanograting-based SPR sensors is predicted to be about 540 nm per refractive index unit (RIU) using optimized structural parameters. Furthermore, the grating period can be used as a parameter to adjust the wavelength of resonance reflection. Our study on SPR sensors through planar metallic film closely coupled to nanogratings demonstrates the potential for significant improvement in refractive index sensitivity, since it shows much greater flexibility in terms of tuning the optical parameters of the device.展开更多
The long period fiber grating (LPFG) is widely used as a sensor due to its high sensitivity and resolution. However, the broad bandwidth of the attenuation bands formed by the mode coupling between the fundamental c...The long period fiber grating (LPFG) is widely used as a sensor due to its high sensitivity and resolution. However, the broad bandwidth of the attenuation bands formed by the mode coupling between the fundamental core mode and the cladding modes constitutes a difficulty when the device is used as a conventional sensor. To overcome this limitation, a Michelson interferometer-type sensor configuration has been developed, using an LPFG grating pair formed by coating a mirror at the distal end of the LPFG. This sensor configuration is more convenient to use and is able to overcome the limitations of the single LPFG based sensor as the shifts in the attenuation bands being more easily detectable due to the formation of the sharp spectral fringe pattern in the LPFG based Michelson interferometer. In this work, I studied the LPFG based Michelson interferometer as the refractive index sensor and discussed the sensitivity enhancement of the LPFG based Michelson interferometer as a refractive index sensor by employing higher order cladding modes and by reducing the cladding radius. The results demonstrated the HE17 mode with a cladding radius of 62.5 μm, in the range of surrounding refractive index (SRI) of 1 - 1.45, and its resonant peak showed a wavelength shift of 26.99nm/RIU. When the cladding region was further reduced to 24μm, the resonant peak showed a wavelength shift of 569.88 nm/RIU, resulting in a sensitivity enhancement of nearly 21 times. However, as the cladding region was etched further, then the HE17 order cladding mode and higher mode would be cut off. Therefore, the implementation of high sensitivity for SRI sensing with the reduced cladding in the LPFG based Michelson interferometer is dependent on the proper combination of the cladding radius and cladding mode order.展开更多
A plasmonic refractive index(RI) sensor with high RI sensitivity based on a gold composite structure is proposed.This composite structure is constructed from a perfect gold nano-disk square array on a gold film, with ...A plasmonic refractive index(RI) sensor with high RI sensitivity based on a gold composite structure is proposed.This composite structure is constructed from a perfect gold nano-disk square array on a gold film, with a SiO_2 spacer. The reflection spectra of the composite structure, with analyte RI in the range of 1.30 to 1.40, are theoretically studied using the finite-difference time-domain method. The incident light beam is partly coupled to the localized surface plasmons(LSP) of the single nano-disks and partly transferred to the propagating surface plasmons(PSP) by grating coupling. The reflectivity is nearly zero at the valley of the reflection spectrum because of the strong coupling between LSP and PSP. Also, the full width at half maximum(FWHM) of one of the surface plasmon polaritons(SPPs) modes is very narrow, which is helpful for RI sensing. An RI sensitivity as high as 853 nm/RIU is obtained. The influence of the structure parameters on the RI sensitivity and the sensor figure of merit(FOM) are investigated in detail. We find that the sensor maintains high RI sensitivity over a large range of periods and nano-disk diameters. Results of the theoretical simulation of the composite structure as a plasmonic sensor are promising. Thus, this composite structure could be extensively applied in the fields of biology and chemistry.展开更多
Detection of liquid mixture of different volume ratio is very important in industrial purposes. The paper reports a sensing mechanism of binary liquid mixture for different volume fraction, based on the measurement of...Detection of liquid mixture of different volume ratio is very important in industrial purposes. The paper reports a sensing mechanism of binary liquid mixture for different volume fraction, based on the measurement of refractive index of the mixture. Here, a highly sensitive liquid filled core Photonic Crystal Fiber structure has been proposed to detect liquid mixture solution. Numerical investigation of the proposed structure is carried out by employing full vectorial Finite Element Method (FEM).展开更多
It was found out that the change of refractive index of ambient gas can lead to obvious change of the color of Morpho butterfly's wing. Such phenomenon has been employed as a sensing principle for detecting gas. In t...It was found out that the change of refractive index of ambient gas can lead to obvious change of the color of Morpho butterfly's wing. Such phenomenon has been employed as a sensing principle for detecting gas. In the present study, Rigorous Coupled-Wave Analysis (RCWA) was described briefly, and the partial derivative of optical reflection efficiency with respect to the refractive index of ambient gas, i.e., sensitivity of the sensor, was derived based on RCWA. A bioinspired grating model was constructed by mimicking the nanostructure on the ground scale of Morpho didius butterfly's wing. The analytical sensitivity was verified and the effect of the grating shape on the reflection spectra and its sensitivity were discussed. The results show that by tuning shape parameters of the grating, we can obtain desired reflection spectra and sensitivity, which can be applied to the design of the bioinspired refractive index based gas sensor.展开更多
基金This work was supported by the Pre-Research Special Project in Important Fundamental Research of China under Grant No.2005CCA04200.
文摘We investigate the sensitivity enhancement of surface plasmon resonance (SPR) sensors through planar metallic film closely coupled to nanogratings. The effects of the thickness of metallic film and grating period on the refractive index sensitivity of the device are analyzed in detail. The refractive index sensitivity of nanograting-based SPR sensors is predicted to be about 540 nm per refractive index unit (RIU) using optimized structural parameters. Furthermore, the grating period can be used as a parameter to adjust the wavelength of resonance reflection. Our study on SPR sensors through planar metallic film closely coupled to nanogratings demonstrates the potential for significant improvement in refractive index sensitivity, since it shows much greater flexibility in terms of tuning the optical parameters of the device.
文摘The long period fiber grating (LPFG) is widely used as a sensor due to its high sensitivity and resolution. However, the broad bandwidth of the attenuation bands formed by the mode coupling between the fundamental core mode and the cladding modes constitutes a difficulty when the device is used as a conventional sensor. To overcome this limitation, a Michelson interferometer-type sensor configuration has been developed, using an LPFG grating pair formed by coating a mirror at the distal end of the LPFG. This sensor configuration is more convenient to use and is able to overcome the limitations of the single LPFG based sensor as the shifts in the attenuation bands being more easily detectable due to the formation of the sharp spectral fringe pattern in the LPFG based Michelson interferometer. In this work, I studied the LPFG based Michelson interferometer as the refractive index sensor and discussed the sensitivity enhancement of the LPFG based Michelson interferometer as a refractive index sensor by employing higher order cladding modes and by reducing the cladding radius. The results demonstrated the HE17 mode with a cladding radius of 62.5 μm, in the range of surrounding refractive index (SRI) of 1 - 1.45, and its resonant peak showed a wavelength shift of 26.99nm/RIU. When the cladding region was further reduced to 24μm, the resonant peak showed a wavelength shift of 569.88 nm/RIU, resulting in a sensitivity enhancement of nearly 21 times. However, as the cladding region was etched further, then the HE17 order cladding mode and higher mode would be cut off. Therefore, the implementation of high sensitivity for SRI sensing with the reduced cladding in the LPFG based Michelson interferometer is dependent on the proper combination of the cladding radius and cladding mode order.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61865008 and 61505074)the Undergraduate Innovation Training Program of Gansu Province,China(Grant No.DC2018002)the Undergraduate Innovation Training Program of Lanzhou University of Technology(Grant No.DC2018004)
文摘A plasmonic refractive index(RI) sensor with high RI sensitivity based on a gold composite structure is proposed.This composite structure is constructed from a perfect gold nano-disk square array on a gold film, with a SiO_2 spacer. The reflection spectra of the composite structure, with analyte RI in the range of 1.30 to 1.40, are theoretically studied using the finite-difference time-domain method. The incident light beam is partly coupled to the localized surface plasmons(LSP) of the single nano-disks and partly transferred to the propagating surface plasmons(PSP) by grating coupling. The reflectivity is nearly zero at the valley of the reflection spectrum because of the strong coupling between LSP and PSP. Also, the full width at half maximum(FWHM) of one of the surface plasmon polaritons(SPPs) modes is very narrow, which is helpful for RI sensing. An RI sensitivity as high as 853 nm/RIU is obtained. The influence of the structure parameters on the RI sensitivity and the sensor figure of merit(FOM) are investigated in detail. We find that the sensor maintains high RI sensitivity over a large range of periods and nano-disk diameters. Results of the theoretical simulation of the composite structure as a plasmonic sensor are promising. Thus, this composite structure could be extensively applied in the fields of biology and chemistry.
文摘Detection of liquid mixture of different volume ratio is very important in industrial purposes. The paper reports a sensing mechanism of binary liquid mixture for different volume fraction, based on the measurement of refractive index of the mixture. Here, a highly sensitive liquid filled core Photonic Crystal Fiber structure has been proposed to detect liquid mixture solution. Numerical investigation of the proposed structure is carried out by employing full vectorial Finite Element Method (FEM).
文摘It was found out that the change of refractive index of ambient gas can lead to obvious change of the color of Morpho butterfly's wing. Such phenomenon has been employed as a sensing principle for detecting gas. In the present study, Rigorous Coupled-Wave Analysis (RCWA) was described briefly, and the partial derivative of optical reflection efficiency with respect to the refractive index of ambient gas, i.e., sensitivity of the sensor, was derived based on RCWA. A bioinspired grating model was constructed by mimicking the nanostructure on the ground scale of Morpho didius butterfly's wing. The analytical sensitivity was verified and the effect of the grating shape on the reflection spectra and its sensitivity were discussed. The results show that by tuning shape parameters of the grating, we can obtain desired reflection spectra and sensitivity, which can be applied to the design of the bioinspired refractive index based gas sensor.