In this study, toxicological data for zinc (Zn), cadmium (Cd), hexavalent chromium (Cr (VI)), benzene, and nitrobenzene were collected from various databases and publications, screened and then constructed int...In this study, toxicological data for zinc (Zn), cadmium (Cd), hexavalent chromium (Cr (VI)), benzene, and nitrobenzene were collected from various databases and publications, screened and then constructed into species sensitivity distribution (SSD) curves. Then water quality criteria (WQC) were derived for protection of the freshwater aquatic life in China against five representative pollutants. The values derived in this study were compared with those issued by the US Environmental Protection Agency and the Chinese national environmental standard for surface water to identify factors underlying the differences. The results showed that the SSD curves for the five pollutants differed significantly, with the examined aquatic species being gen- erally more sensitive to Zn, Cd, and Cr (VI) than benzene and nitrobenzene. The acute WQC were: 48.43 μg L-1 for Zn, 0.4218 μg L-1 for Cd, 45.79μg L-1 for Cr (VI), 2651 μg L-1 for benzene, and 1426 μg L-1 for nitrobenzene. The chronic WQC were: 20.01μg L-1 for Zn, 0.2428 μg L-j for Cd, 14.22 μg L-1 for Cr (VI), 530.2 μg L J for benzene, and 286.2 μg L-1 for nitroben- zene. The results of this comparative study of representative pollutants may offer guideline values for future WQC studies for China.展开更多
The Tibet Plateau, occupying the main part of Qinghai-Tibet Plateau and having an average altitude of 4 500 m, has geomorphological features that are unique in the world, with soil erosion being one of the main ecolog...The Tibet Plateau, occupying the main part of Qinghai-Tibet Plateau and having an average altitude of 4 500 m, has geomorphological features that are unique in the world, with soil erosion being one of the main ecological problems. Thus the main objectives of the present research were to set up an efficient and simple way of evaluating spatial distribution of soil erosion sensitivity in the Tibet Plateau as well as the responses of soil erosion to changes of natural environmental conditions, and to indicate key regions where soil erosion should be preferentially controlled. Based on the Universal Soil Loss Equation (USLE), the study applied geographic information system (GIS) technology to develop a methodological reference framework, from which soil erosion sensitivity could be evaluated. The impact of precipitation, soil, topography and vegetation on soil erosion was divided into classes of extreme sensitivity, high sensitivity, medium sensitivity, low sensitivity and no sensitivity. With the aid of GIS, the resultant map from overlaying various factors showed that soil erosion sensitivity had great discrepancy in different parts of the region. In the southeastern part of the Tibet Plateau there were mainly three classes of sensitivity, namely, extreme, high and medium sensitivity. However, the other two classes, low and no sensitivity, were dominant in the northwestern part.展开更多
基金supported by National Basic Research Program of China(Grant No. 2008CB418200)Environmental Public Welfare Program(Grant No. 2010009032)National Natural Science Foundation of China (Grant Nos. U0833603, 40973090)
文摘In this study, toxicological data for zinc (Zn), cadmium (Cd), hexavalent chromium (Cr (VI)), benzene, and nitrobenzene were collected from various databases and publications, screened and then constructed into species sensitivity distribution (SSD) curves. Then water quality criteria (WQC) were derived for protection of the freshwater aquatic life in China against five representative pollutants. The values derived in this study were compared with those issued by the US Environmental Protection Agency and the Chinese national environmental standard for surface water to identify factors underlying the differences. The results showed that the SSD curves for the five pollutants differed significantly, with the examined aquatic species being gen- erally more sensitive to Zn, Cd, and Cr (VI) than benzene and nitrobenzene. The acute WQC were: 48.43 μg L-1 for Zn, 0.4218 μg L-1 for Cd, 45.79μg L-1 for Cr (VI), 2651 μg L-1 for benzene, and 1426 μg L-1 for nitrobenzene. The chronic WQC were: 20.01μg L-1 for Zn, 0.2428 μg L-j for Cd, 14.22 μg L-1 for Cr (VI), 530.2 μg L J for benzene, and 286.2 μg L-1 for nitroben- zene. The results of this comparative study of representative pollutants may offer guideline values for future WQC studies for China.
基金Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX3-SW-339-04).
文摘The Tibet Plateau, occupying the main part of Qinghai-Tibet Plateau and having an average altitude of 4 500 m, has geomorphological features that are unique in the world, with soil erosion being one of the main ecological problems. Thus the main objectives of the present research were to set up an efficient and simple way of evaluating spatial distribution of soil erosion sensitivity in the Tibet Plateau as well as the responses of soil erosion to changes of natural environmental conditions, and to indicate key regions where soil erosion should be preferentially controlled. Based on the Universal Soil Loss Equation (USLE), the study applied geographic information system (GIS) technology to develop a methodological reference framework, from which soil erosion sensitivity could be evaluated. The impact of precipitation, soil, topography and vegetation on soil erosion was divided into classes of extreme sensitivity, high sensitivity, medium sensitivity, low sensitivity and no sensitivity. With the aid of GIS, the resultant map from overlaying various factors showed that soil erosion sensitivity had great discrepancy in different parts of the region. In the southeastern part of the Tibet Plateau there were mainly three classes of sensitivity, namely, extreme, high and medium sensitivity. However, the other two classes, low and no sensitivity, were dominant in the northwestern part.