Soil moisture is a vital physical parameter of the active-layer in permafrost environments, and associated biological and geophysical processes operative at the microscopic to hemispheric spatial scales and at hourly ...Soil moisture is a vital physical parameter of the active-layer in permafrost environments, and associated biological and geophysical processes operative at the microscopic to hemispheric spatial scales and at hourly to multi-decadal time scales. While?in-situ?measurements can give the highest quality of information on a site-specific basis, the vast permafrost terrains of North America and Eurasia require space-based techniques for assessments of cause and effect and long-term changes and impacts from the changes of permafrost and the active-layer. Satellite-based 6.925 and 10.65 GHz sensor algorithmic retrievals of soil moisture by Advanced Microwave Scanning Radiometer-Earth Observation System (AMSR-E) onboard NASA-Aqua and follow-on AMSR2 onboard JAXA-Global Change Observation Mission—Water-1 are ongoing since July 2002. Accurate land-surface temperature and vegetation parameters are critical to the success of passive microwave algorithmic retrieval schemes. Strategically located soil moisture measurements are needed for spatial and temporal co-location evaluation and validation of the space-based algorithmic estimates. We compare on a daily basis ground-based (subsurface-probe) 50- and 70-MHz radio-frequency soil moisture measurements with NASA- and JAXA-algorithmic retrieval passive microwave retrievals. We find improvements in performance of the JAXA-algorithm (AMSR-E reprocessed and AMSR2 ongoing) relative to the earlier NASA-algorithm version. In the boreal forest regions, accurate land-surface temperatures and vegetation parameters are still needed for algorithmic retrieval success. Over the period of AMSR-E retrievals, we find evidence of at the high northern latitudes of growing terrestrial radio-frequency interference in the 10.65 GHz channel soil moisture content. This is an important error source for satellite-based active and passive microwave remote sensing soil moisture retrievals in Arctic regions that must be addressed.展开更多
为了改进图像恢复效果,减少运行时间,提出了一种基于改进的多层小波分解压缩感知图像的处理方法。该方法利用小波变换对图像进行多层分解,根据小波域高频系数分布特点通过高斯矩阵随机观测,利用正交匹配追踪算法(OMP)恢复高频系数,最...为了改进图像恢复效果,减少运行时间,提出了一种基于改进的多层小波分解压缩感知图像的处理方法。该方法利用小波变换对图像进行多层分解,根据小波域高频系数分布特点通过高斯矩阵随机观测,利用正交匹配追踪算法(OMP)恢复高频系数,最后通过小波逆变换重构图像。实验结果表明,本文的算法优于传统算法,峰值信噪比(PSNR)平均提高了4~6 d B,运行时间缩短了1~2个量级,为物联网、无线传输技术提供了更好的可能性。展开更多
It is one of the important methods to retrieve lunar regolith thickness using active and passive microwave techniques.The retrieval of lunar regolith thickness is based on microwave radiation transfer process simulati...It is one of the important methods to retrieve lunar regolith thickness using active and passive microwave techniques.The retrieval of lunar regolith thickness is based on microwave radiation transfer process simulation in the regolith media.The lunar regolith model is first introduced,and the features of the involved physical parameters are indicated thereafter,such as dielectric constants,surface roughness,particle size and thermal grads of the lunar regolith.The time delay and the migration of the radar echoes from the different interfaces is the key problem for active microwave measurement.And the simulation of the microwave radiative transfer in the regolith media is the important technique for the passive microwave measurement.The important parameters and the physical mechanism for the two measurements are also presented.展开更多
文摘Soil moisture is a vital physical parameter of the active-layer in permafrost environments, and associated biological and geophysical processes operative at the microscopic to hemispheric spatial scales and at hourly to multi-decadal time scales. While?in-situ?measurements can give the highest quality of information on a site-specific basis, the vast permafrost terrains of North America and Eurasia require space-based techniques for assessments of cause and effect and long-term changes and impacts from the changes of permafrost and the active-layer. Satellite-based 6.925 and 10.65 GHz sensor algorithmic retrievals of soil moisture by Advanced Microwave Scanning Radiometer-Earth Observation System (AMSR-E) onboard NASA-Aqua and follow-on AMSR2 onboard JAXA-Global Change Observation Mission—Water-1 are ongoing since July 2002. Accurate land-surface temperature and vegetation parameters are critical to the success of passive microwave algorithmic retrieval schemes. Strategically located soil moisture measurements are needed for spatial and temporal co-location evaluation and validation of the space-based algorithmic estimates. We compare on a daily basis ground-based (subsurface-probe) 50- and 70-MHz radio-frequency soil moisture measurements with NASA- and JAXA-algorithmic retrieval passive microwave retrievals. We find improvements in performance of the JAXA-algorithm (AMSR-E reprocessed and AMSR2 ongoing) relative to the earlier NASA-algorithm version. In the boreal forest regions, accurate land-surface temperatures and vegetation parameters are still needed for algorithmic retrieval success. Over the period of AMSR-E retrievals, we find evidence of at the high northern latitudes of growing terrestrial radio-frequency interference in the 10.65 GHz channel soil moisture content. This is an important error source for satellite-based active and passive microwave remote sensing soil moisture retrievals in Arctic regions that must be addressed.
文摘为了改进图像恢复效果,减少运行时间,提出了一种基于改进的多层小波分解压缩感知图像的处理方法。该方法利用小波变换对图像进行多层分解,根据小波域高频系数分布特点通过高斯矩阵随机观测,利用正交匹配追踪算法(OMP)恢复高频系数,最后通过小波逆变换重构图像。实验结果表明,本文的算法优于传统算法,峰值信噪比(PSNR)平均提高了4~6 d B,运行时间缩短了1~2个量级,为物联网、无线传输技术提供了更好的可能性。
基金Supported by Project of (NSFC) (No 40471086)National 863 Project(No 2006AA12Z102)
文摘It is one of the important methods to retrieve lunar regolith thickness using active and passive microwave techniques.The retrieval of lunar regolith thickness is based on microwave radiation transfer process simulation in the regolith media.The lunar regolith model is first introduced,and the features of the involved physical parameters are indicated thereafter,such as dielectric constants,surface roughness,particle size and thermal grads of the lunar regolith.The time delay and the migration of the radar echoes from the different interfaces is the key problem for active microwave measurement.And the simulation of the microwave radiative transfer in the regolith media is the important technique for the passive microwave measurement.The important parameters and the physical mechanism for the two measurements are also presented.