The “Huang gua” melons were measured for their physical properties including firmness and static elastic modulus. The vibrational characteristics of fruits and vegetables are governed by their elastic modulus (firmn...The “Huang gua” melons were measured for their physical properties including firmness and static elastic modulus. The vibrational characteristics of fruits and vegetables are governed by their elastic modulus (firmness), mass, and geometry. Therefore, it is possible to evaluate firmness of fruits and vegetables based on their vibrational characteristics. Analysis of the vibration responses of a fruit is suggested for measuring elastic properties (Firmness) non-destructively. The impulse response method is often used to measure firmness of fruits. The fruit was excited using three types of balls (wooden, steel and rubber) and the vibration is detected by an accelerometer. The Instron device was used to measure the static elastic modulus of the inner, middle and outer portions of melon flesh. Finite element (FE) technique was used to determine the optimum excitation location of the chosen measurement sensor and to analyze the mode shape fruits. Four types of mode shapes (torsional or flexural mode shape, first-type, second-type spherical mode and breathing mode shape) were found. Finite element simulation results agreed well with experimental results. Correlation between the firmness and resonant frequency (r2=0.91) and between the resonant frequency and stiffness factor (r2=0.74) existed. The optimum location and suitable direction for excitation and response measurement on the fruit were suggested.展开更多
Soft pneumatic actuators are one of the most promising actuation for soft robots,and great achievements have been obtained.But it remains challenging to endow sensing capabilities to pneumatic actuators,especially for...Soft pneumatic actuators are one of the most promising actuation for soft robots,and great achievements have been obtained.But it remains challenging to endow sensing capabilities to pneumatic actuators,especially for the sensing ability originating directly from the actuator architecture.Herein,a self-sensing pneumatic torsional actuator(SPTA)is designed based on the electromagnetic induction effect and magnetically responsive materials.The SPTA can generate feedback voltage and current with the deformation,in which the sensing function comes from its inherent structure.To investigate the mechanical and electrical characteristics,an experimental platform and a finite element model are established,respectively.We find that the torsion angle and output torque increase in nonlinear with the actuating pressure.The maximum torsion angle is 66.35°,which is 84.34%of that for the actuator fabricated by pure rubber.The maximum output torque(24.9 N mm)improves by 23.19%compared with the actuator made by pure rubber.As regards the electrical characteristics,the maximum feedback voltage and current are 2.90μV and 29.50 nA when the SPTA is actuated by a pressure of−40 kPa.We also demonstrate that the relationship between the torsion angle and the magnetic flux change is approximately linear.Finally,the number of turns of wires,magnetic powders contents,and magnetic direction on the feedback voltage and current are studied.Results show that the feedback voltage and current can be enhanced by increasing the number of turns and magnetic powders contents.We envision that the SPTA would be promising for soft robots to realize their accuracy control and intelligentization.展开更多
This paper presents a new designed miniature six DOF (degree of freedom) force/torque sensor. This sensor is fully integrated with a micro DSP (digital signal processor), so all the signal conditioning, A/D, decou...This paper presents a new designed miniature six DOF (degree of freedom) force/torque sensor. This sensor is fully integrated with a micro DSP (digital signal processor), so all the signal conditioning, A/D, decoupling, digital-signals serial output are performed in the sensor. Some experimental results are presented to demonstrate the capability of the proposed design. Finally, a neural network was used for decoupling the interacting signals, compared with the conventional method using the inverse matrix, this new method is more accurate.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 30370371) and the Natural Science Foundation of Zheji-ang Province (No. 301267), China
文摘The “Huang gua” melons were measured for their physical properties including firmness and static elastic modulus. The vibrational characteristics of fruits and vegetables are governed by their elastic modulus (firmness), mass, and geometry. Therefore, it is possible to evaluate firmness of fruits and vegetables based on their vibrational characteristics. Analysis of the vibration responses of a fruit is suggested for measuring elastic properties (Firmness) non-destructively. The impulse response method is often used to measure firmness of fruits. The fruit was excited using three types of balls (wooden, steel and rubber) and the vibration is detected by an accelerometer. The Instron device was used to measure the static elastic modulus of the inner, middle and outer portions of melon flesh. Finite element (FE) technique was used to determine the optimum excitation location of the chosen measurement sensor and to analyze the mode shape fruits. Four types of mode shapes (torsional or flexural mode shape, first-type, second-type spherical mode and breathing mode shape) were found. Finite element simulation results agreed well with experimental results. Correlation between the firmness and resonant frequency (r2=0.91) and between the resonant frequency and stiffness factor (r2=0.74) existed. The optimum location and suitable direction for excitation and response measurement on the fruit were suggested.
基金This work was supported by the Natural Science Foundation of Jiangxi Province of China(Grant No.20232BAB214050)the National Natural Science Foundation of China(Grant No.52165004).
文摘Soft pneumatic actuators are one of the most promising actuation for soft robots,and great achievements have been obtained.But it remains challenging to endow sensing capabilities to pneumatic actuators,especially for the sensing ability originating directly from the actuator architecture.Herein,a self-sensing pneumatic torsional actuator(SPTA)is designed based on the electromagnetic induction effect and magnetically responsive materials.The SPTA can generate feedback voltage and current with the deformation,in which the sensing function comes from its inherent structure.To investigate the mechanical and electrical characteristics,an experimental platform and a finite element model are established,respectively.We find that the torsion angle and output torque increase in nonlinear with the actuating pressure.The maximum torsion angle is 66.35°,which is 84.34%of that for the actuator fabricated by pure rubber.The maximum output torque(24.9 N mm)improves by 23.19%compared with the actuator made by pure rubber.As regards the electrical characteristics,the maximum feedback voltage and current are 2.90μV and 29.50 nA when the SPTA is actuated by a pressure of−40 kPa.We also demonstrate that the relationship between the torsion angle and the magnetic flux change is approximately linear.Finally,the number of turns of wires,magnetic powders contents,and magnetic direction on the feedback voltage and current are studied.Results show that the feedback voltage and current can be enhanced by increasing the number of turns and magnetic powders contents.We envision that the SPTA would be promising for soft robots to realize their accuracy control and intelligentization.
基金Supported by the National Natural Science Foundation of China ( No. 60275032 ) and the Supported bv the High Technology Research and Development Programme of China ( No. 2003AA404220).
文摘This paper presents a new designed miniature six DOF (degree of freedom) force/torque sensor. This sensor is fully integrated with a micro DSP (digital signal processor), so all the signal conditioning, A/D, decoupling, digital-signals serial output are performed in the sensor. Some experimental results are presented to demonstrate the capability of the proposed design. Finally, a neural network was used for decoupling the interacting signals, compared with the conventional method using the inverse matrix, this new method is more accurate.