Friction,wear,and contact fatigue are the main causes of energy loss,material waste,and equipment failure.The aim of remanufacturing is to repair and modify the damaged equipment surface,and the surface coating is the...Friction,wear,and contact fatigue are the main causes of energy loss,material waste,and equipment failure.The aim of remanufacturing is to repair and modify the damaged equipment surface,and the surface coating is the major material that allows the remanufactured parts to be used in a new round of operation.Thus,the design and preparation of surface coatings are very important to repair,strengthen,or modify the friction pairs,in order to ensure long-term operation of the remanufactured parts.Recent1y,a lot of research on designing and preparing friction pair surface modification coatings has been conducted by the National Key Laboratory for Remanufacturing (NKLR).The research conducted achieved the following goals:the mechanism of micro/nano multilayer surface modification coatings with long-term efficacy life was revealed,and the corresponding design considerations and preparation methods of nanocrystalline micro tribological coatings were innovatively developed.A series of new 'two-step' processes to prepare sulfide solid lubricating coatings were developed.The competitive failure mechanism of the surface coating in simultaneous wear and fatigue conditions was revealed,and some composite coatings with dual properties of wear resistance and fatigue resistance were prepared.Based on the stress distribution of friction surface contact areas and the piezoelectric effect,a failure warning intelligent coating is designed and developed.These coatings have been successfully applied to critical friction components,such as the spindle of large centrifugal compressors,engine cylinder piston components,and driver gear pairs.展开更多
A kind of fluorescent sensing coating was prepared for monitoring corrosion of aluminum alloys by incorporating phenylfluorone(PF) into acrylic paint as sensing material. The fluorescent dye PF reacts with aluminum io...A kind of fluorescent sensing coating was prepared for monitoring corrosion of aluminum alloys by incorporating phenylfluorone(PF) into acrylic paint as sensing material. The fluorescent dye PF reacts with aluminum ions on corroded aluminum substrate to occur fluorescence quenching observed in UV light. This paint system is sensitive to underlying corrosion processes through reacting with the Al3+ produced by anodic reaction accompanying corrosion. After a certain time, when the samples of Al alloy 2024 coated with PF-acrylic paint were immersed in 1 mol/L NaCl solution, fluorescence quenching spots can be seen with unaided eyes. With the development of corrosion process, the size of fluorescence quenching spots increases. Active corrosion areas on the sample surface were found under the fluorescence quenching spots by optical microscope. The corrosion areas can be observed more clearly by SEM, and many pits are found. This suggests that the fluorescence quenching spots are the sites of produced Al3+ by the anodic reaction of the local attack of the coated Al alloy substrate in the chloride solution and the corrosion process of the coated Al alloy can be monitored on-line by the sensing coating. The sensitivity of this coating system for detection of anodic reaction associated with corrosion was determined by applying constant charge current and measuring the charge, at which fluorescence quenching is detected in the coating with unaided eyes. Visual observation of coated samples can detect fluorescence change resulting from a charge corresponding to an equivalent hemispherical pit with approximate depth of 50 μm.展开更多
This paper presents the development of a Twin-T oscillator comprising polymer coated parallel plates as a sensor for ocean water salinity monitoring.This sensor employs a parallel plate capacitor design, with sea wate...This paper presents the development of a Twin-T oscillator comprising polymer coated parallel plates as a sensor for ocean water salinity monitoring.This sensor employs a parallel plate capacitor design, with sea water serving as the medium between plates. Novalac resin and a proprietary commercial polymer (AccufloTW) were investigated as corrosion protective coatings for the copper electrodes of the capacitor. Electrochemical Impedance Spectroscopy (EIS) was employed to evaluate corrosion inhibition of polymer coatingin sea water. A detection circuit was designed and simulated using P-spice and then implemented in Printed Circuit Board (PCB). EIS results indicate that Accuflo exhibits better corrosion inhibition in ocean water than Novolac. Further, the use of Twin-T oscillator based detection circuit resulted in enhanced sensitivity and better detection limit. Experiments performed using ocean water samples resulted in oscillator frequency shift of 410 Hertz/power supply unit (Hz/PSU). Oscillator frequency drift was reduced using frequency-to-voltage converters and sensitivity of 10 mV/PSU was achieved.展开更多
This study presented the effect of the concentration of graphene in the dispersion,the type of polyvinyl alcohol(PVA)and the surfactant on the sensing properties of dip-coated graphene/spandex yarns as resistance stra...This study presented the effect of the concentration of graphene in the dispersion,the type of polyvinyl alcohol(PVA)and the surfactant on the sensing properties of dip-coated graphene/spandex yarns as resistance strain sensors.Experimental results showed that the addition of styrene-acrylic emulsion surfactant facilitates the dispersion of graphene and then improves the conductivity and sensing performance,and the sensitivity is up to 91.The conductivity and sensing properties of graphene/spandex yarns at 2%graphene dispersion are better than those at 1%graphene dispersion.When the conductive yarn treated by 2%graphene dispersion is stretched to 50%,the sensitivity is up to 29,the repeatability is good,and the hysteresis is low.In terms of the binding agent,PVA as a high alcoholysis and large polymerization decreases the sensitivity,repeatability as well as the hysteresis.展开更多
文摘Friction,wear,and contact fatigue are the main causes of energy loss,material waste,and equipment failure.The aim of remanufacturing is to repair and modify the damaged equipment surface,and the surface coating is the major material that allows the remanufactured parts to be used in a new round of operation.Thus,the design and preparation of surface coatings are very important to repair,strengthen,or modify the friction pairs,in order to ensure long-term operation of the remanufactured parts.Recent1y,a lot of research on designing and preparing friction pair surface modification coatings has been conducted by the National Key Laboratory for Remanufacturing (NKLR).The research conducted achieved the following goals:the mechanism of micro/nano multilayer surface modification coatings with long-term efficacy life was revealed,and the corresponding design considerations and preparation methods of nanocrystalline micro tribological coatings were innovatively developed.A series of new 'two-step' processes to prepare sulfide solid lubricating coatings were developed.The competitive failure mechanism of the surface coating in simultaneous wear and fatigue conditions was revealed,and some composite coatings with dual properties of wear resistance and fatigue resistance were prepared.Based on the stress distribution of friction surface contact areas and the piezoelectric effect,a failure warning intelligent coating is designed and developed.These coatings have been successfully applied to critical friction components,such as the spindle of large centrifugal compressors,engine cylinder piston components,and driver gear pairs.
文摘A kind of fluorescent sensing coating was prepared for monitoring corrosion of aluminum alloys by incorporating phenylfluorone(PF) into acrylic paint as sensing material. The fluorescent dye PF reacts with aluminum ions on corroded aluminum substrate to occur fluorescence quenching observed in UV light. This paint system is sensitive to underlying corrosion processes through reacting with the Al3+ produced by anodic reaction accompanying corrosion. After a certain time, when the samples of Al alloy 2024 coated with PF-acrylic paint were immersed in 1 mol/L NaCl solution, fluorescence quenching spots can be seen with unaided eyes. With the development of corrosion process, the size of fluorescence quenching spots increases. Active corrosion areas on the sample surface were found under the fluorescence quenching spots by optical microscope. The corrosion areas can be observed more clearly by SEM, and many pits are found. This suggests that the fluorescence quenching spots are the sites of produced Al3+ by the anodic reaction of the local attack of the coated Al alloy substrate in the chloride solution and the corrosion process of the coated Al alloy can be monitored on-line by the sensing coating. The sensitivity of this coating system for detection of anodic reaction associated with corrosion was determined by applying constant charge current and measuring the charge, at which fluorescence quenching is detected in the coating with unaided eyes. Visual observation of coated samples can detect fluorescence change resulting from a charge corresponding to an equivalent hemispherical pit with approximate depth of 50 μm.
文摘This paper presents the development of a Twin-T oscillator comprising polymer coated parallel plates as a sensor for ocean water salinity monitoring.This sensor employs a parallel plate capacitor design, with sea water serving as the medium between plates. Novalac resin and a proprietary commercial polymer (AccufloTW) were investigated as corrosion protective coatings for the copper electrodes of the capacitor. Electrochemical Impedance Spectroscopy (EIS) was employed to evaluate corrosion inhibition of polymer coatingin sea water. A detection circuit was designed and simulated using P-spice and then implemented in Printed Circuit Board (PCB). EIS results indicate that Accuflo exhibits better corrosion inhibition in ocean water than Novolac. Further, the use of Twin-T oscillator based detection circuit resulted in enhanced sensitivity and better detection limit. Experiments performed using ocean water samples resulted in oscillator frequency shift of 410 Hertz/power supply unit (Hz/PSU). Oscillator frequency drift was reduced using frequency-to-voltage converters and sensitivity of 10 mV/PSU was achieved.
基金Biomedical Textile Material Science and Technology,China(111 Project)(No.B07024)
文摘This study presented the effect of the concentration of graphene in the dispersion,the type of polyvinyl alcohol(PVA)and the surfactant on the sensing properties of dip-coated graphene/spandex yarns as resistance strain sensors.Experimental results showed that the addition of styrene-acrylic emulsion surfactant facilitates the dispersion of graphene and then improves the conductivity and sensing performance,and the sensitivity is up to 91.The conductivity and sensing properties of graphene/spandex yarns at 2%graphene dispersion are better than those at 1%graphene dispersion.When the conductive yarn treated by 2%graphene dispersion is stretched to 50%,the sensitivity is up to 29,the repeatability is good,and the hysteresis is low.In terms of the binding agent,PVA as a high alcoholysis and large polymerization decreases the sensitivity,repeatability as well as the hysteresis.