期刊文献+
共找到1,305篇文章
< 1 2 66 >
每页显示 20 50 100
半监督学习方法 被引量:134
1
作者 刘建伟 刘媛 罗雄麟 《计算机学报》 EI CSCD 北大核心 2015年第8期1592-1617,共26页
半监督学习研究如何同时利用有类标签的样本和无类标签的样例改进学习性能,成为近年来机器学习领域的研究热点.鉴于半监督学习的理论意义和实际应用价值,系统综述了半监督学习方法.首先概述了半监督学习的相关概念,包括半监督学习的定... 半监督学习研究如何同时利用有类标签的样本和无类标签的样例改进学习性能,成为近年来机器学习领域的研究热点.鉴于半监督学习的理论意义和实际应用价值,系统综述了半监督学习方法.首先概述了半监督学习的相关概念,包括半监督学习的定义、半监督学习研究的发展历程、半监督学习方法依赖的假设以及半监督学习的分类,然后分别从分类、回归、聚类和降维这4个方面详述了半监督学习方法,接着从理论上对半监督学习进行了分析并给出半监督学习的误差界和样本复杂度,最后探讨了半监督学习领域未来的研究方向. 展开更多
关键词 半监督学习 有类标签的样本 无类标签的样例 类标签 成对约束
下载PDF
机器学习及其相关算法综述 被引量:85
2
作者 陈凯 朱钰 《统计与信息论坛》 2007年第5期105-112,共8页
自从计算机被发明以来,人们就想知道它能不能学习。机器学习从本质上是一个多学科的领域。它吸取了人工智能、概率统计、计算复杂性理论、控制论、信息论、哲学、生理学、神经生物学等学科的成果。文章主要从统计学习基础的角度对机器... 自从计算机被发明以来,人们就想知道它能不能学习。机器学习从本质上是一个多学科的领域。它吸取了人工智能、概率统计、计算复杂性理论、控制论、信息论、哲学、生理学、神经生物学等学科的成果。文章主要从统计学习基础的角度对机器学习的发展历程以及一些相关的常用算法进行了简要的回顾和介绍。 展开更多
关键词 机器学习 有指导学习 无指导学习 半指导学习
下载PDF
基于分歧的半监督学习 被引量:87
3
作者 周志华 《自动化学报》 EI CSCD 北大核心 2013年第11期1871-1878,共8页
传统监督学习通常需使用大量有标记的数据样本作为训练例,而在很多现实问题中,人们虽能容易地获得大批数据样本,但为数据提供标记却需耗费很多人力物力.那么,在仅有少量有标记数据时,可否通过对大量未标记数据进行利用来提升学习性能呢... 传统监督学习通常需使用大量有标记的数据样本作为训练例,而在很多现实问题中,人们虽能容易地获得大批数据样本,但为数据提供标记却需耗费很多人力物力.那么,在仅有少量有标记数据时,可否通过对大量未标记数据进行利用来提升学习性能呢?为此,半监督学习成为近十多年来机器学习的一大研究热点.基于分歧的半监督学习是该领域的主流范型之一,它通过使用多个学习器来对未标记数据进行利用,而学习器间的"分歧"对学习成效至关重要.本文将综述简介这方面的一些研究进展. 展开更多
关键词 机器学习 半监督学习 基于分歧的半监督学习 未标记数据
下载PDF
基于主动学习和半监督学习的多类图像分类 被引量:74
4
作者 陈荣 曹永锋 孙洪 《自动化学报》 EI CSCD 北大核心 2011年第8期954-962,共9页
多数图像分类算法需要大量的训练样本对分类器模型进行训练.在实际应用中,对大量样本进行标注非常枯燥、耗时.对于一些特殊图像,如合成孔径雷达(Synthetic aperture radar,SAR)图像,对其内容判读非常困难,因此能够获得的标注样本数量非... 多数图像分类算法需要大量的训练样本对分类器模型进行训练.在实际应用中,对大量样本进行标注非常枯燥、耗时.对于一些特殊图像,如合成孔径雷达(Synthetic aperture radar,SAR)图像,对其内容判读非常困难,因此能够获得的标注样本数量非常有限.本文将基于最优标号和次优标号(Best vs second-best,BvSB)的主动学习和带约束条件的自学习(Constrained self-training,CST)引入到基于支持向量机(Support vector machine,SVM)分类器的图像分类算法中,提出了一种新的图像分类方法.通过BvSB主动学习去挖掘那些对当前分类器模型最有价值的样本进行人工标注,并借助CST半监督学习进一步利用样本集中大量的未标注样本,使得在花费较小标注代价情况下,能够获得良好的分类性能.将新方法与随机样本选择、基于熵的不确定性采样主动学习算法以及BvSB主动学习方法进行了性能比较.对3个光学图像集及1个SAR图像集分类问题的实验结果显示,新方法能够有效地减少分类器训练时所需的人工标注样本的数量,并获得较高的准确率和较好的鲁棒性. 展开更多
关键词 主动学习 半监督学习 支持向量机 图像分类
下载PDF
面向军事文本的命名实体识别 被引量:50
5
作者 冯蕴天 张宏军 郝文宁 《计算机科学》 CSCD 北大核心 2015年第7期15-18,47,共5页
针对军事文本中的命名实体,提出一种基于条件随机场模型的半监督命名实体识别方法,旨在将人员军职军衔名、军事装备名、军用物资名、军事设施名、军事机构名(含部队番号)以及军用地名等军事命名实体的识别融合到一个统一的技术框架中。... 针对军事文本中的命名实体,提出一种基于条件随机场模型的半监督命名实体识别方法,旨在将人员军职军衔名、军事装备名、军用物资名、军事设施名、军事机构名(含部队番号)以及军用地名等军事命名实体的识别融合到一个统一的技术框架中。该方法针对军事文本的语法特点建立高效的特征集合,建立条件随机场模型对军事命名实体进行识别,并依次使用基于词典的方法和基于规则的方法对识别结果进行校正。实验表明,该方法在军事文本中能够出色地完成命名实体识别任务,在测试语料上的F-值最高达到90.9%,接近通用领域中命名实体识别的水平。 展开更多
关键词 军事文本 命名实体识别 条件随机场 半监督学习 军事信息处理
下载PDF
基于半监督学习的行为建模与异常检测 被引量:30
6
作者 李和平 胡占义 +1 位作者 吴毅红 吴福朝 《软件学报》 EI CSCD 北大核心 2007年第3期527-537,共11页
提出了一种基于半监督学习的行为建模与异常检测方法.该算法包括以下几个主要步骤:(1)通过基于动态时间归整(DTW)的谱聚类方法获取适量的正常行为样本,对正常行为的隐马尔可夫模型(HMM)进行初始化;(2)通过迭代学习的方法在大样本下进一... 提出了一种基于半监督学习的行为建模与异常检测方法.该算法包括以下几个主要步骤:(1)通过基于动态时间归整(DTW)的谱聚类方法获取适量的正常行为样本,对正常行为的隐马尔可夫模型(HMM)进行初始化;(2)通过迭代学习的方法在大样本下进一步训练这些隐马尔可夫模型参数;(3)以监督的方式,利用最大后验(MAP)自适应方法估计异常行为的隐马尔可夫模型参数;(4)建立行为的隐马尔可夫拓扑结构模型,用于异常检测.该方法的主要特点是:能够自动地选择正常行为模式的种类和样本以建立正常行为模型;能够在较少样本的情况下避免隐马尔可夫模型欠学习的问题,建立有效的异常行为模型.实验结果表明,该算法与其他方法相比具有更高的可靠性. 展开更多
关键词 行为建模 异常检测 半监督学习 隐马尔可夫模型 计算机视觉
下载PDF
基于半监督学习的无线网络攻击行为检测优化方法 被引量:43
7
作者 王婷 王娜 +1 位作者 崔运鹏 李欢 《计算机研究与发展》 EI CSCD 北大核心 2020年第4期791-802,共12页
针对如何优化深度学习技术在海量高维复杂的无线网络流量数据中有效发现异常攻击行为的问题,提出一种基于半监督学习的无线网络攻击行为检测优化方法(WiFi network attacks detection optimization method,WiFi-ADOM).首先基于无监督学... 针对如何优化深度学习技术在海量高维复杂的无线网络流量数据中有效发现异常攻击行为的问题,提出一种基于半监督学习的无线网络攻击行为检测优化方法(WiFi network attacks detection optimization method,WiFi-ADOM).首先基于无监督学习模型栈式稀疏自编码器提出2种网络流量特征表示向量:新特征值向量和原始特征权重值向量.然后利用原始特征权重值向量初始化监督学习模型深度神经网络的权重值得到网络攻击类型的预判结果,并通过无监督学习聚类方法Bi-kmeans对网络流量的新特征值向量进行聚类以生成未知攻击类型判别纠正项.最后结合预判结果和未知攻击类型判别纠正项,得到网络攻击类型的最终判定结果.通过和已有研究方法对比,在公开无线网络攻击行为数据集AWID上验证了WiFi-ADOM方法对网络攻击行为检测的优化性能,同时探索了与网络攻击检测相关的重要特征属性的问题.实验结果表明:WiFi-ADOM方法在保证准确率等检测性能的同时能够有效检测未知攻击类型,具备优化网络攻击行为检测的能力. 展开更多
关键词 网络攻击行为检测 网络入侵检测 半监督学习 深度学习 Bi-kmeans聚类
下载PDF
深度学习发展综述 被引量:39
8
作者 侯宇青阳 全吉成 王宏伟 《舰船电子工程》 2017年第4期5-9,111,共6页
鉴于深度学习的研究和应用价值及在学术和工业领域中的重要地位,对目前有代表性的主流的深度学习网络模型进行介绍,概述了深度学习当前发展状态,综述了深度学习发展方向。首先介绍了深度学习的历史沿革,根据应用研究对四种主要深度学习... 鉴于深度学习的研究和应用价值及在学术和工业领域中的重要地位,对目前有代表性的主流的深度学习网络模型进行介绍,概述了深度学习当前发展状态,综述了深度学习发展方向。首先介绍了深度学习的历史沿革,根据应用研究对四种主要深度学习网络进行介绍,然后从网络性能提升、网络体系发展、新学习模式探索、深度强化学习、可视化理论研究五个方面总结了目前深度学习的发展状态,最后提出下一步深度学习发展展望。可以看到:深度学习在不同领域都有广泛的应用,而且具有明显的优势,但也存在需要进一步深入探索的问题,如提高深度学习的智能性、提高无标签数据的利用率等。 展开更多
关键词 深度学习 卷积神经网络 半监督学习 深度强化学习 人工智能
下载PDF
半监督典型相关分析算法 被引量:32
9
作者 彭岩 张道强 《软件学报》 EI CSCD 北大核心 2008年第11期2822-2832,共11页
在典型相关分析算法(canonical correlation analysis,简称CCA)的基础上,通过引入以成对约束形式给出的监督信息,提出了一种半监督的典型相关分析算法(Semi-CCA).在此算法中,除了考虑大量的无标号样本以外,还考虑成对约束信息,即已知两... 在典型相关分析算法(canonical correlation analysis,简称CCA)的基础上,通过引入以成对约束形式给出的监督信息,提出了一种半监督的典型相关分析算法(Semi-CCA).在此算法中,除了考虑大量的无标号样本以外,还考虑成对约束信息,即已知两样本属于同一类(正约束)或不属于同一类(负约束),同时验证了两者的相对重要性.在人工数据集、多特征手写体数据集和人脸数据集(Yale和AR)上的实验结果表明,Semi-CCA能够有效地利用少量的监督信息采提高分类性能. 展开更多
关键词 典型相关分析 半监督学习 成对约束 降维 分类
下载PDF
大数据时代机器学习的新趋势 被引量:37
10
作者 陈康 向勇 喻超 《电信科学》 北大核心 2012年第12期88-95,共8页
当前,大数据技术和应用吸引了众多的关注,对大量结构繁多的数据进行分析并获得知识,需要充分利用机器学习的相关技术和成果。本文主要讨论了大数据时代机器学习的发展新趋势和研究重点,并对与大数据相关性大的几个关键技术进行了分析介绍。
关键词 大数据 机器学习 半监督学习 集成学习 概率图模型 迁移学习
下载PDF
半监督集成学习综述 被引量:33
11
作者 蔡毅 朱秀芳 +1 位作者 孙章丽 陈阿娇 《计算机科学》 CSCD 北大核心 2017年第S1期7-13,共7页
半监督学习和集成学习是目前机器学习领域中两个非常重要的研究方向,半监督学习注重利用有标记样本与无标记样本来获得高性能分类器,而集成学习旨在利用多个学习器进行集成以提升弱学习器的精度。半监督集成学习是将半监督学习和集成学... 半监督学习和集成学习是目前机器学习领域中两个非常重要的研究方向,半监督学习注重利用有标记样本与无标记样本来获得高性能分类器,而集成学习旨在利用多个学习器进行集成以提升弱学习器的精度。半监督集成学习是将半监督学习和集成学习进行组合来提升分类器泛化性能的机器学习新方法。首先,在分析半监督集成学习发展过程的基础上,发现半监督集成学习起源于基于分歧的半监督学习方法;然后,综合分析现有半监督集成学习方法,将其分为基于半监督的集成学习与基于集成的半监督学习两大类,并对主要的半监督集成方法进行了介绍;最后,对现有研究进了总结,并讨论了未来值得研究的问题。 展开更多
关键词 半监督学习 集成学习 半监督集成学习 BOOSTING BAGGING 泛化性能
下载PDF
基于分层高斯混合模型的半监督学习算法 被引量:22
12
作者 孙广玲 唐降龙 《计算机研究与发展》 EI CSCD 北大核心 2004年第1期156-161,共6页
提出了一种基于分层高斯混合模型的半监督学习算法 半监督学习算法的学习样本包括已标记类别样本和未标记类别学习样本 如用高斯混合模型拟合每个类别已标记学习样本的概率分布 ,进而用高斯数为类别数的分层高斯混合模型拟合全部 (已... 提出了一种基于分层高斯混合模型的半监督学习算法 半监督学习算法的学习样本包括已标记类别样本和未标记类别学习样本 如用高斯混合模型拟合每个类别已标记学习样本的概率分布 ,进而用高斯数为类别数的分层高斯混合模型拟合全部 (已标记和未标记 )学习样本的分布 ,则形成为一个基于分层的高斯混合模型的半监督学习问题 基于EM算法 ,首先利用每个类别已标记样本学习高斯混合模型 ,然后以该模型参数和已标记样本的频率分布作为分层高斯混合模型参数的初值 ,给出了基于分层高斯混合模型的半监督学习算法 以银行票据印刷体数字识别做实验 ,实验结果表明 。 展开更多
关键词 半监督学习 高斯混合模型 分层高斯混合模型 EM算法
下载PDF
半监督学习理论及其研究进展概述 被引量:31
13
作者 屠恩美 杨杰 《上海交通大学学报》 EI CAS CSCD 北大核心 2018年第10期1280-1291,共12页
半监督学习介于传统监督学习和无监督学习之间,是一种新型机器学习方法,其思想是在标记样本数量很少的情况下,通过在模型训练中引入无标记样本来避免传统监督学习在训练样本不足(学习不充分)时出现性能(或模型)退化的问题.半监督学习已... 半监督学习介于传统监督学习和无监督学习之间,是一种新型机器学习方法,其思想是在标记样本数量很少的情况下,通过在模型训练中引入无标记样本来避免传统监督学习在训练样本不足(学习不充分)时出现性能(或模型)退化的问题.半监督学习已在许多领域被成功应用.回顾了半监督学习的发展历程和主要理论,并介绍了半监督学习研究的最新进展,最后结合应用实例分析了半监督学习在解决实际问题中的重要作用. 展开更多
关键词 机器学习 半监督学习 图的拉普拉斯矩阵
下载PDF
基于局部与全局保持的半监督维数约减方法 被引量:25
14
作者 韦佳 彭宏 《软件学报》 EI CSCD 北大核心 2008年第11期2833-2842,共10页
在很多机器学习和数据挖掘任务中,仅仅利用边信息(side-information)并不能得到最好的半监督学习(semi-supervised learning)效果,因此,提出一种基于局部与全局保持的半监督维数约减(local and global preserving based semi-supervised... 在很多机器学习和数据挖掘任务中,仅仅利用边信息(side-information)并不能得到最好的半监督学习(semi-supervised learning)效果,因此,提出一种基于局部与全局保持的半监督维数约减(local and global preserving based semi-supervised dimensionality reduction,简称LGSSDR)方法.该算法不仅能够保持正、负约束信息而且能够保持数据集所在低维流形的全局以及局部信息.另外,该算法能够计算出变换矩阵并较容易地处理未见样本.实验结果验证了该算法的有效性. 展开更多
关键词 边信息 局部与全局保持 半监督学习 维数约减 图嵌入
下载PDF
基于数据挖掘的区域暂态电压稳定评估 被引量:29
15
作者 朱利鹏 陆超 +3 位作者 孙元章 黄河 苏寅生 李智欢 《电网技术》 EI CSCD 北大核心 2015年第4期1026-1032,共7页
针对区域暂态电压稳定评估相关理论还不完善、工程判据可靠性不足等问题,提出了基于数据挖掘的区域暂态电压稳定评估方法,构建了综合考虑单点负荷稳定与多点电压相互影响的2层评价框架。利用节点稳定度量指标及基于辨识的电压无功灵敏... 针对区域暂态电压稳定评估相关理论还不完善、工程判据可靠性不足等问题,提出了基于数据挖掘的区域暂态电压稳定评估方法,构建了综合考虑单点负荷稳定与多点电压相互影响的2层评价框架。利用节点稳定度量指标及基于辨识的电压无功灵敏度矩阵提取网络原始特征。面对区域暂态电压失稳尚无可靠界定标准的难题,采用基于约束的半监督学习方式对数据集进行可靠分类。基于决策树算法建立逐步更新的分类模型,生成区域暂态电压稳定判据,通过模型挖掘出有关电压分区、代表节点的内在规律。EPRI 36节点系统上的仿真结果证明了评估方案的有效性,以及分类评估模型的适应性和准确性。 展开更多
关键词 区域暂态电压稳定评估 数据挖掘 灵敏度辨识 半监督学习 决策树
下载PDF
半监督谱聚类特征向量选择算法 被引量:29
16
作者 赵凤 焦李成 +1 位作者 刘汉强 公茂果 《模式识别与人工智能》 EI CSCD 北大核心 2011年第1期48-56,共9页
对于一个K类问题,Ng-Jordan-Weiss(NJW)谱聚类算法通常采用数据规范化亲和度矩阵的前K个最大特征值对应的特征向量作为数据的一种表示.然而,对于某些模式识别问题,这K个特征向量不一定能够体现原始数据的结构.文中提出一种半监督谱聚类... 对于一个K类问题,Ng-Jordan-Weiss(NJW)谱聚类算法通常采用数据规范化亲和度矩阵的前K个最大特征值对应的特征向量作为数据的一种表示.然而,对于某些模式识别问题,这K个特征向量不一定能够体现原始数据的结构.文中提出一种半监督谱聚类特征向量选择算法.该算法利用一定量的监督信息寻找能够体现数据结构的特征向量组合,进而获得优于传统谱聚类算法的聚类性能.UCI标准数据集和MNIST手写体数据集上的仿真实验验证该算法的有效性和鲁棒性. 展开更多
关键词 谱聚类 特征向量选择 半监督学习 免疫克隆选择
原文传递
一种半监督K均值多关系数据聚类算法 被引量:22
17
作者 高滢 刘大有 +1 位作者 齐红 刘赫 《软件学报》 EI CSCD 北大核心 2008年第11期2814-2821,共8页
提出了一种半监督K均值多关系数据聚类算法.该算法在K均值聚类算法的基础上扩展了其初始类簇的选择方法和对象相似性度量方法,以用于多关系数据的半监督学习.为了获取高性能,该算法在聚类过程中充分利用了标记数据、对象属性及各种关系... 提出了一种半监督K均值多关系数据聚类算法.该算法在K均值聚类算法的基础上扩展了其初始类簇的选择方法和对象相似性度量方法,以用于多关系数据的半监督学习.为了获取高性能,该算法在聚类过程中充分利用了标记数据、对象属性及各种关系信息.多关系数据库Movie上的实验结果验证了该算法的有效性. 展开更多
关键词 数据挖掘 半监督学习 聚类算法 多关系数据 K均值聚类
下载PDF
结合限制的分隔模型及K-Means算法 被引量:23
18
作者 何振峰 熊范纶 《软件学报》 EI CSCD 北大核心 2005年第5期799-809,共11页
将数据对象间的关联限制与K-means算法结合可以取得较好的效果,但由于划分是由K个中心决定的,每一类仅由一个中心决定,分隔的表示方法限制了算法效果的进一步提高.基于数据对象间的两类限制,定义了数据对象和集合间的两类关联,以及集合... 将数据对象间的关联限制与K-means算法结合可以取得较好的效果,但由于划分是由K个中心决定的,每一类仅由一个中心决定,分隔的表示方法限制了算法效果的进一步提高.基于数据对象间的两类限制,定义了数据对象和集合间的两类关联,以及集合间的3类关联,在此基础上给出了结合限制的分隔模型.在模型中,基于集合间的正关联,多个子集中心可以用来表示同一类,使划分的表示可以更为灵活、精细.基于此模型,给出了相应的算法CKS(constrained K-means with subsets)来生成结合限制的分隔.对3个UCI数据集的实验结果显示:在准确率及健壮性上,CKS显著优于另一个结合关联限制的K-means类算法COP-K-means,与另一个代表性的算法CCL相比,也有相当优势;在时间代价上,CKS也有一定优势. 展开更多
关键词 聚类分析 限制聚类 半监督学习 背景知识 机器学习
下载PDF
基于情感关键句抽取的情感分类研究 被引量:27
19
作者 林政 谭松波 程学旗 《计算机研究与发展》 EI CSCD 北大核心 2012年第11期2376-2382,共7页
情感分析需要解决的一个重要问题是判断一篇文档的极性是正面的还是负面的.情感分类的正确率很难达到普通文本分类的水平,因为情感分类更难更复杂.在判断文档的情感极性时,不同的句子具有不同的情感贡献度,所以,对整篇文档的关键句和细... 情感分析需要解决的一个重要问题是判断一篇文档的极性是正面的还是负面的.情感分类的正确率很难达到普通文本分类的水平,因为情感分类更难更复杂.在判断文档的情感极性时,不同的句子具有不同的情感贡献度,所以,对整篇文档的关键句和细节句进行区分将有助于提高情感分类的性能.关键句通常简短且具有判别性,而细节描述句通常复杂多样且容易引入歧义.在关键句抽取算法中,考虑3类属性:情感属性、位置属性和关键词属性.为了更好地利用关键句和细节句之间的差异性和互补性,将抽取的关键句分别用于有监督的和半监督的情感分类.在有监督情感分类中,采用的是分类器融合的方法;在半监督情感分类中,采用的是Co-training算法.在8个领域上进行实验,结果表明所提方法性能明显优于Baseline,从而证明情感关键句抽取算法是有效的. 展开更多
关键词 情感分类 关键句 分类器融合 联合训练 有监督学习 半监督学习
下载PDF
结合深度学习和半监督学习的遥感影像分类进展 被引量:26
20
作者 谭琨 王雪 杜培军 《中国图象图形学报》 CSCD 北大核心 2019年第11期1823-1841,共19页
本文以结合深度学习的遥感影像特征提取和不充足样本下地物识别与分类作为出发点,对2017-2019年用于遥感图像处理中小样本训练的深度学习方法进行归类总结,介绍如何结合深度学习技术解决遥感影像在样本不充分情况下的有效训练问题,从深... 本文以结合深度学习的遥感影像特征提取和不充足样本下地物识别与分类作为出发点,对2017-2019年用于遥感图像处理中小样本训练的深度学习方法进行归类总结,介绍如何结合深度学习技术解决遥感影像在样本不充分情况下的有效训练问题,从深度生成模型、迁移学习以及一些高效特征提取网络3个方面进行全面剖析。首先,探讨了以GAN(generative adversarial network)和VAE(variational autoencoder)及其衍生结构在遥感技术中分类、变化检测上的应用;然后,在基于知识复用的辅助训练策略--迁移学习中主要从基于网络的迁移和基于数据结构的迁移两大类应用展开讨论;最后探讨了结合半监督学习和主动学习等思想的深度学习算法以及一些新颖的网络结构的应用。虽然深度学习在遥感技术领域发挥了极大的优势,性能也普遍超过了浅层的学习器,但结合物理模型的分析和高性能的实用性遥感应用仍需进一步发展与研究。 展开更多
关键词 遥感影像分类 深度学习 深度生成模型 半监督学习 迁移学习
原文传递
上一页 1 2 66 下一页 到第
使用帮助 返回顶部