As fossil fuel stocks are being depleted,alternative sources of energy must be explored.Consequently,traditional thermal power plants must coexist with renewable resources,such as wind,solar,and hydro units,and all-da...As fossil fuel stocks are being depleted,alternative sources of energy must be explored.Consequently,traditional thermal power plants must coexist with renewable resources,such as wind,solar,and hydro units,and all-day planning and operation techniques are necessary to safeguard nature while meeting the current demand.The fundamental components of contemporary power systems are the simultaneous decrease in generation costs and increase in the available transfer capacity(ATC)of current systems.Thermal units are linked to sources of renewable energy such as hydro,wind,and solar power,and are set up to run for 24 h.By contrast,new research reports that various chaotic maps are merged with various existing optimization methodologies to obtain better results than those without the inclusion of chaos.Chaos seems to increase the performance and convergence properties of existing optimization approaches.In this study,selfish animal tendencies,mathematically represented as selfish herd optimizers,were hybridized with chaotic phenomena and used to improve ATC and/or reduce generation costs,creating a multi-objective optimization problem.To evaluate the performance of the proposed hybridized optimization technique,an optimal power flow-based ATC was enforced under various hydro-thermal-solar-wind conditions,that is,the renewable energy source-thermal scheduling concept,on IEEE 9-bus,IEEE 39-bus,and Indian Northern Region Power Grid 246-bus test systems.The findings show that the proposed technique outperforms existing well-established optimization strategies.展开更多
The introduction of new technologies has increased communication network coverage and the number of associating nodes in dynamic communication networks(DCN).As the network has the characteristics like decentralized an...The introduction of new technologies has increased communication network coverage and the number of associating nodes in dynamic communication networks(DCN).As the network has the characteristics like decentralized and dynamic,few nodes in the network may not associate with other nodes.These uncooperative nodes also known as selfish nodes corrupt the performance of the cooperative nodes.Namely,the nodes cause congestion,high delay,security concerns,and resource depletion.This study presents an effective selfish node detection method to address these problems.The Price of Anarchy(PoA)and the Price of Stability(PoS)in Game Theory with the Presence of Nash Equilibrium(NE)are discussed for the Selfish Node Detection.This is a novel experiment to detect selfish nodes in a network using PoA.Moreover,the least response dynamic-based Capacitated Selfish Resource Allocation(CSRA)game is introduced to improve resource usage among the nodes.The suggested strategy is simulated using the Solar Winds simulator,and the simulation results show that,when compared to earlier methods,the new scheme offers promising performance in terms of delivery rate,delay,and throughput.展开更多
There is relatively limited knowledge concerning our understanding of how our immune system and brain take most of the available energy in a selfish manner to compensate for their own needs on priority in high energy ...There is relatively limited knowledge concerning our understanding of how our immune system and brain take most of the available energy in a selfish manner to compensate for their own needs on priority in high energy demanding situations. The main objective of this review is to understand the energy allocation to immune system and brain in infections and/or fight or flight situations. The immune system and brain behave in a selfish manner as they allocate themselves majority of the total available energy. Insulin resistance (IR) is used as a tool for energy allocation by these systems. The immune system is activated as a response to stress and infection. Similarly, the brain gets activated as a response to any external environmental impulse, anxiety, and/or mental factor. These situations need to be dealt in a way to minimize their adverse health effects. The immune system and the brain in such situations need enormous energy for activation which is derived from the energy quota otherwise allocated to other organs. This maximum flux of energy towards these systems is achieved by making rest of the organs less responsive to insulin, a condition known as IR. As immune system and brain do not depend upon insulin for uptake of glucose, these systems are benefited from IR. IR is indicated as a beneficial role ensuring maximum energy allocation to these systems for improving health and well-being.展开更多
The main intention of developing cognitive radio technology is to solve the spectrum deficiency problem by allocating the spectrum dynamically to the unlicensed clients. An important aim of any wireless network is to ...The main intention of developing cognitive radio technology is to solve the spectrum deficiency problem by allocating the spectrum dynamically to the unlicensed clients. An important aim of any wireless network is to secure communication. It is to help the unlicensed clients to utilize the maximum available licensed bandwidth, and the cognitive network is designed for opportunistic communication technology. Selfish attacks cause serious security problem because they significantly deteriorate the performance of a cognitive network. In this paper, the selfish attacks have been identified using cooperative neighboring cognitive radio ad hoc network (COOPON). A novel technique has been proposed as ICOOPON (improvised COOPON), which shows improved performance in selfish attack detection as compared to existing technique. A comparative study has been presented to find the efficiency of proposed technique. The parameters used are throughput, packet delivery ratio and end to end delay.展开更多
A selfish behavior detection technique is investigated to assist secure cooperative trans- mission at the physical layer. The detection technique calculates the correlation ratio between signals received from the dive...A selfish behavior detection technique is investigated to assist secure cooperative trans- mission at the physical layer. The detection technique calculates the correlation ratio between signals received from the diversity branches to determine the relay' s behavior in amplify and forward coop- eration strategy. The correlation ratio is considerably reduced because the relay' s selfish behavior makes the correlation between the received signals in the diversity branch degraded. Simulation re- sults show that the proposed mechanism can effectively detect selfish nodes and performance will be improved significantly with the destination' s detection technique.展开更多
In wireless sensor networks, due to the energy and resource constraints, nodes may be unwilling to forward packets for their neighbors. This can render severe deteriorations in the network performance and malfunctions...In wireless sensor networks, due to the energy and resource constraints, nodes may be unwilling to forward packets for their neighbors. This can render severe deteriorations in the network performance and malfunctions of the system. To tackle such selfish behaviors and enhance the cooperation among sensors, based on reputation and energy consumption of each node, we present a utility function to punish the malicious nodes and encourage cooperation among nodes. Specifically, we firstly give a mixed strategy Nash equilibrium solution for the two nodes. Then we extend the model to multi-nodes scenario. With the unity function, each sensor’s reputation is evaluated according to its degree of cooperation. The extensive simulation results have shown the effectiveness of the mechanism, in that the cooperative behaviors are encouraged, which can ensure the normal functioning of the network system.展开更多
A MANET is a cooperative network in which each node has dual responsibilities of forwarding and routing thus node strength is a major factor because a lesser number of nodes reduces network performance. The existing r...A MANET is a cooperative network in which each node has dual responsibilities of forwarding and routing thus node strength is a major factor because a lesser number of nodes reduces network performance. The existing reputation based methods have limitation due to their stricter punishment strategy because they isolate nodes from network participation having lesser reputation value and thus reduce the total strength of nodes in a network. In this paper we have proposed a mathematical model for the classification of nodes in MANETs using adaptive decision boundary. This model classifies nodes in two classes: selfish and regular node as well as it assigns the grade to individual nodes. The grade is computed by counting how many passes are required to classify a node and it is used to define the punishment strategy as well as enhances the reputation definition of traditional reputation based mechanisms. Our work provides the extent of noncooperation that a network can allow depending on the current strength of nodes for the given scenario and thus includes selfish nodes in network participation with warning messages. We have taken a leader node for reputation calculation and classification which saves energy of other nodes as energy is a major challenge of MANET. The leader node finally sends the warning message to low grade nodes and broadcasts the classification list in the MANET that is considered in the routing activity.展开更多
Coccinellid pupae use an array of defensive strategies against their natural enemies. This study aims to assess the efficiency of gregarious pupation as a defensive mechanism against intraguild predators and cannibals...Coccinellid pupae use an array of defensive strategies against their natural enemies. This study aims to assess the efficiency of gregarious pupation as a defensive mechanism against intraguild predators and cannibals in coccinellid. The study was designed specifically (i) to determine the natural occurrence of gregarious pupation in the field for different coccinellid species, and (ii) to evaluate the adaptive value of gregarious pupation as a defensive mechanism against 2 types of predators (i.e., cannibals and intraguild predators). In the field, gregarious pupation consisted of a group of 2-5 pupae. The proportion of gregarious pupation observed varied according to species, the highest rate being observed with Harmonia axyridis Pallas (Coccinellidae; 14.17%). Gregarious pupation had no impact on the probability that intraguild predators and cannibals locate pupae. Intraguild predation occurred more often in site with gregarious pupation, while cannibalism occurred as often in site with gregarious pupation as in site with isolated pupa. However, for a specific pupa, the mortality rate was higher for isolated pupae than for pupae located in a gregarious pupation site both in the presence of intraguild predators and in the presence of cannibals. The spatial location of pupae within the group had no impact on mortality rate. Since it reduces the risk of predation, it is proposed that gregarious pupation act as a defensive mechanism for 11. axyridis pupae.展开更多
Undoubtedly,Tess of the D'Urbervilles,the masterpiece of Thomas Hardy,is a precious diamond shining in the worldliterature.Through Tess' s short and miserable life,the main characters Alec,Angel,her parents an...Undoubtedly,Tess of the D'Urbervilles,the masterpiece of Thomas Hardy,is a precious diamond shining in the worldliterature.Through Tess' s short and miserable life,the main characters Alec,Angel,her parents and even herself directly lead toher tragical ending.This thesis will analyze those people's characters detailedly and systematically.Meanwhile,it will explain howthey influence and change Tess greatly.Tess' s destiny is thoroughly changed when she accidentally meets Alec.He owns Tess byunlawful sexual intercourse due to his man's selfish desire.Later,when Tess tells Angel her experience with Alec and her baby,hetotally collapsed,disappointed,distressed and his open-minded behavior disappears.The angel is so man-centered that he consid-ers his dignity and advantages in the first position.Her parents are incapable,ignorant and vainglorious and simple-minded.Tess' shonesty,sincerity and dignity also lead to her tragedy.When she has no way to take care of her family,she doesn't choose to con-tact Angel but go back to Alec's bosom because she thinks that Angel has decided to terminate their relationship.Since all abovementioned,people are social animal and always receive their surrounding's impact on them whether actively or subjectively.Dur-ing Tess' s short and desperate life,the people she has recognized or contacted with are limited.Those main characters,Alec,An-gel,Tess' s parents and herself directly lead to her tragical destiny.展开更多
文摘As fossil fuel stocks are being depleted,alternative sources of energy must be explored.Consequently,traditional thermal power plants must coexist with renewable resources,such as wind,solar,and hydro units,and all-day planning and operation techniques are necessary to safeguard nature while meeting the current demand.The fundamental components of contemporary power systems are the simultaneous decrease in generation costs and increase in the available transfer capacity(ATC)of current systems.Thermal units are linked to sources of renewable energy such as hydro,wind,and solar power,and are set up to run for 24 h.By contrast,new research reports that various chaotic maps are merged with various existing optimization methodologies to obtain better results than those without the inclusion of chaos.Chaos seems to increase the performance and convergence properties of existing optimization approaches.In this study,selfish animal tendencies,mathematically represented as selfish herd optimizers,were hybridized with chaotic phenomena and used to improve ATC and/or reduce generation costs,creating a multi-objective optimization problem.To evaluate the performance of the proposed hybridized optimization technique,an optimal power flow-based ATC was enforced under various hydro-thermal-solar-wind conditions,that is,the renewable energy source-thermal scheduling concept,on IEEE 9-bus,IEEE 39-bus,and Indian Northern Region Power Grid 246-bus test systems.The findings show that the proposed technique outperforms existing well-established optimization strategies.
文摘The introduction of new technologies has increased communication network coverage and the number of associating nodes in dynamic communication networks(DCN).As the network has the characteristics like decentralized and dynamic,few nodes in the network may not associate with other nodes.These uncooperative nodes also known as selfish nodes corrupt the performance of the cooperative nodes.Namely,the nodes cause congestion,high delay,security concerns,and resource depletion.This study presents an effective selfish node detection method to address these problems.The Price of Anarchy(PoA)and the Price of Stability(PoS)in Game Theory with the Presence of Nash Equilibrium(NE)are discussed for the Selfish Node Detection.This is a novel experiment to detect selfish nodes in a network using PoA.Moreover,the least response dynamic-based Capacitated Selfish Resource Allocation(CSRA)game is introduced to improve resource usage among the nodes.The suggested strategy is simulated using the Solar Winds simulator,and the simulation results show that,when compared to earlier methods,the new scheme offers promising performance in terms of delivery rate,delay,and throughput.
文摘There is relatively limited knowledge concerning our understanding of how our immune system and brain take most of the available energy in a selfish manner to compensate for their own needs on priority in high energy demanding situations. The main objective of this review is to understand the energy allocation to immune system and brain in infections and/or fight or flight situations. The immune system and brain behave in a selfish manner as they allocate themselves majority of the total available energy. Insulin resistance (IR) is used as a tool for energy allocation by these systems. The immune system is activated as a response to stress and infection. Similarly, the brain gets activated as a response to any external environmental impulse, anxiety, and/or mental factor. These situations need to be dealt in a way to minimize their adverse health effects. The immune system and the brain in such situations need enormous energy for activation which is derived from the energy quota otherwise allocated to other organs. This maximum flux of energy towards these systems is achieved by making rest of the organs less responsive to insulin, a condition known as IR. As immune system and brain do not depend upon insulin for uptake of glucose, these systems are benefited from IR. IR is indicated as a beneficial role ensuring maximum energy allocation to these systems for improving health and well-being.
文摘The main intention of developing cognitive radio technology is to solve the spectrum deficiency problem by allocating the spectrum dynamically to the unlicensed clients. An important aim of any wireless network is to secure communication. It is to help the unlicensed clients to utilize the maximum available licensed bandwidth, and the cognitive network is designed for opportunistic communication technology. Selfish attacks cause serious security problem because they significantly deteriorate the performance of a cognitive network. In this paper, the selfish attacks have been identified using cooperative neighboring cognitive radio ad hoc network (COOPON). A novel technique has been proposed as ICOOPON (improvised COOPON), which shows improved performance in selfish attack detection as compared to existing technique. A comparative study has been presented to find the efficiency of proposed technique. The parameters used are throughput, packet delivery ratio and end to end delay.
基金Supported by the National High Technology Research and Development Program of China("863"Program) (2009AA011507)
文摘A selfish behavior detection technique is investigated to assist secure cooperative trans- mission at the physical layer. The detection technique calculates the correlation ratio between signals received from the diversity branches to determine the relay' s behavior in amplify and forward coop- eration strategy. The correlation ratio is considerably reduced because the relay' s selfish behavior makes the correlation between the received signals in the diversity branch degraded. Simulation re- sults show that the proposed mechanism can effectively detect selfish nodes and performance will be improved significantly with the destination' s detection technique.
文摘In wireless sensor networks, due to the energy and resource constraints, nodes may be unwilling to forward packets for their neighbors. This can render severe deteriorations in the network performance and malfunctions of the system. To tackle such selfish behaviors and enhance the cooperation among sensors, based on reputation and energy consumption of each node, we present a utility function to punish the malicious nodes and encourage cooperation among nodes. Specifically, we firstly give a mixed strategy Nash equilibrium solution for the two nodes. Then we extend the model to multi-nodes scenario. With the unity function, each sensor’s reputation is evaluated according to its degree of cooperation. The extensive simulation results have shown the effectiveness of the mechanism, in that the cooperative behaviors are encouraged, which can ensure the normal functioning of the network system.
文摘A MANET is a cooperative network in which each node has dual responsibilities of forwarding and routing thus node strength is a major factor because a lesser number of nodes reduces network performance. The existing reputation based methods have limitation due to their stricter punishment strategy because they isolate nodes from network participation having lesser reputation value and thus reduce the total strength of nodes in a network. In this paper we have proposed a mathematical model for the classification of nodes in MANETs using adaptive decision boundary. This model classifies nodes in two classes: selfish and regular node as well as it assigns the grade to individual nodes. The grade is computed by counting how many passes are required to classify a node and it is used to define the punishment strategy as well as enhances the reputation definition of traditional reputation based mechanisms. Our work provides the extent of noncooperation that a network can allow depending on the current strength of nodes for the given scenario and thus includes selfish nodes in network participation with warning messages. We have taken a leader node for reputation calculation and classification which saves energy of other nodes as energy is a major challenge of MANET. The leader node finally sends the warning message to low grade nodes and broadcasts the classification list in the MANET that is considered in the routing activity.
文摘Coccinellid pupae use an array of defensive strategies against their natural enemies. This study aims to assess the efficiency of gregarious pupation as a defensive mechanism against intraguild predators and cannibals in coccinellid. The study was designed specifically (i) to determine the natural occurrence of gregarious pupation in the field for different coccinellid species, and (ii) to evaluate the adaptive value of gregarious pupation as a defensive mechanism against 2 types of predators (i.e., cannibals and intraguild predators). In the field, gregarious pupation consisted of a group of 2-5 pupae. The proportion of gregarious pupation observed varied according to species, the highest rate being observed with Harmonia axyridis Pallas (Coccinellidae; 14.17%). Gregarious pupation had no impact on the probability that intraguild predators and cannibals locate pupae. Intraguild predation occurred more often in site with gregarious pupation, while cannibalism occurred as often in site with gregarious pupation as in site with isolated pupa. However, for a specific pupa, the mortality rate was higher for isolated pupae than for pupae located in a gregarious pupation site both in the presence of intraguild predators and in the presence of cannibals. The spatial location of pupae within the group had no impact on mortality rate. Since it reduces the risk of predation, it is proposed that gregarious pupation act as a defensive mechanism for 11. axyridis pupae.
文摘Undoubtedly,Tess of the D'Urbervilles,the masterpiece of Thomas Hardy,is a precious diamond shining in the worldliterature.Through Tess' s short and miserable life,the main characters Alec,Angel,her parents and even herself directly lead toher tragical ending.This thesis will analyze those people's characters detailedly and systematically.Meanwhile,it will explain howthey influence and change Tess greatly.Tess' s destiny is thoroughly changed when she accidentally meets Alec.He owns Tess byunlawful sexual intercourse due to his man's selfish desire.Later,when Tess tells Angel her experience with Alec and her baby,hetotally collapsed,disappointed,distressed and his open-minded behavior disappears.The angel is so man-centered that he consid-ers his dignity and advantages in the first position.Her parents are incapable,ignorant and vainglorious and simple-minded.Tess' shonesty,sincerity and dignity also lead to her tragedy.When she has no way to take care of her family,she doesn't choose to con-tact Angel but go back to Alec's bosom because she thinks that Angel has decided to terminate their relationship.Since all abovementioned,people are social animal and always receive their surrounding's impact on them whether actively or subjectively.Dur-ing Tess' s short and desperate life,the people she has recognized or contacted with are limited.Those main characters,Alec,An-gel,Tess' s parents and herself directly lead to her tragical destiny.