In accordance with the feature of pure delay in monitor AGC system for cold rolling mill, a new fuzzy selftuning PID Smith prediction controller is developed. The position control model is deduced based on a single st...In accordance with the feature of pure delay in monitor AGC system for cold rolling mill, a new fuzzy selftuning PID Smith prediction controller is developed. The position control model is deduced based on a single stand cold rolling mill, and the fuzzy controller for monitor AGC system is designed. The analysis of dynamic performance for traditional PID Smith prediction controller and fuzzy self-tuning PID Smith prediction controller is done by MAT- LAB toolbox. The simulation results show that fuzzy self-tuning PID Smith controller has stronger robustness, faster response and higher static accuracy than traditional PID Smith controller.展开更多
This paper investigates the use of a virtual synchronous generator(VSG) to improve frequency stability in an autonomous photovoltaic-diesel microgrid with energy storage. VSG control is designed to emulate inertial re...This paper investigates the use of a virtual synchronous generator(VSG) to improve frequency stability in an autonomous photovoltaic-diesel microgrid with energy storage. VSG control is designed to emulate inertial response and damping power via power injection from/to the energy storage system. The effect of a VSG with constant parameters(CP-VSG) on the system frequency is analyzed. Based on the case study, self-tuning algorithms are used to search for optimal parameters during the operation of the VSG in order to minimize the amplitude and rate of change of the frequency variations. The performances of the proposed self-tuning(ST)-VSG, the frequency droop method, and the CP-VSG are evaluated by comparing their effects on attenuating frequency variationsunder load variations. For both simulated and experimental cases, the ST-VSG was found to be more efficient than the other two methods in improving frequency stability.展开更多
基金Item Sponsored by National Natural Science Foundation of China (50634030)
文摘In accordance with the feature of pure delay in monitor AGC system for cold rolling mill, a new fuzzy selftuning PID Smith prediction controller is developed. The position control model is deduced based on a single stand cold rolling mill, and the fuzzy controller for monitor AGC system is designed. The analysis of dynamic performance for traditional PID Smith prediction controller and fuzzy self-tuning PID Smith prediction controller is done by MAT- LAB toolbox. The simulation results show that fuzzy self-tuning PID Smith controller has stronger robustness, faster response and higher static accuracy than traditional PID Smith controller.
基金supported by National High Technology Research and Development Program of China(863Program)(No.2015AA050607)the National key Research and Development Program of China(No.2016YFB0900300)the Science and Technology project of SGCC(No.NYB17201700151)
文摘This paper investigates the use of a virtual synchronous generator(VSG) to improve frequency stability in an autonomous photovoltaic-diesel microgrid with energy storage. VSG control is designed to emulate inertial response and damping power via power injection from/to the energy storage system. The effect of a VSG with constant parameters(CP-VSG) on the system frequency is analyzed. Based on the case study, self-tuning algorithms are used to search for optimal parameters during the operation of the VSG in order to minimize the amplitude and rate of change of the frequency variations. The performances of the proposed self-tuning(ST)-VSG, the frequency droop method, and the CP-VSG are evaluated by comparing their effects on attenuating frequency variationsunder load variations. For both simulated and experimental cases, the ST-VSG was found to be more efficient than the other two methods in improving frequency stability.