Porous carbon sheets have wide application prospects in many fields,especially in energy storage of supercapacitor due to the features combining both 2D structure and porous architectures.Herein,a self-deposition appr...Porous carbon sheets have wide application prospects in many fields,especially in energy storage of supercapacitor due to the features combining both 2D structure and porous architectures.Herein,a self-deposition approach is proposed to obtain N-doped mesoporous carbon nanosheets (N-MCNs),using 3-aminophenol (3-AF) as precursor and Mg(OH)_(2) sheet as hard template.This process realizes the direct carbon formation using 3-AF monomer as carbon precursor under the catalysis of hard template avoiding the polymerization and utilization of solvent.The mass ratio of 3-AF to Mg(OH)_(2) plays an important role in determining the pore structures and the resulting capacitance behavior.The results show that N-MCNs with a mass ratio of 3-AF and Mg(OH)_(2) of 1:1 have good electrochemical behavior for supercapacitors.This N-MCNs based electrode exhibits a high capacitance of 240 F·g^(-1)at 1 A·g^(-1),good rate performance(75.4%retention ratio at 20 A·g^(-1)),and high cycling stability with 98.3% initial capacitance retained after 10000 cycles.Symmetric supercapacitors on N-MCNs achieve energy density of 18.2 W·h·kg^(-1) and power density of 0.4 kW·kg^(-1) operated within a wide potential range of 0–1.6 V in 1.0 mol·L^(-1) Na_(2)SO_(4) solution,exhibiting its potential for electrode materials with high performance.展开更多
THIN films have become more and more important in advanced technology,hence attracted theresearch interest in material science and technology.In chemistry,thin films are classified intoorganic and inorganic membranes....THIN films have become more and more important in advanced technology,hence attracted theresearch interest in material science and technology.In chemistry,thin films are classified intoorganic and inorganic membranes.Compared with organic membranes,inorganic membranesexhibit high-temperature stability and surface modifications,and have potential展开更多
基金the Natural Science Foundation of Hebei (B02020208088)S&T Program of Hebei (20544401D, 20314401D, 206Z4406G, 21314402D, B2021208074, 21344601D)Tianjin Science and Technology Project (19YFSLQY00070)。
文摘Porous carbon sheets have wide application prospects in many fields,especially in energy storage of supercapacitor due to the features combining both 2D structure and porous architectures.Herein,a self-deposition approach is proposed to obtain N-doped mesoporous carbon nanosheets (N-MCNs),using 3-aminophenol (3-AF) as precursor and Mg(OH)_(2) sheet as hard template.This process realizes the direct carbon formation using 3-AF monomer as carbon precursor under the catalysis of hard template avoiding the polymerization and utilization of solvent.The mass ratio of 3-AF to Mg(OH)_(2) plays an important role in determining the pore structures and the resulting capacitance behavior.The results show that N-MCNs with a mass ratio of 3-AF and Mg(OH)_(2) of 1:1 have good electrochemical behavior for supercapacitors.This N-MCNs based electrode exhibits a high capacitance of 240 F·g^(-1)at 1 A·g^(-1),good rate performance(75.4%retention ratio at 20 A·g^(-1)),and high cycling stability with 98.3% initial capacitance retained after 10000 cycles.Symmetric supercapacitors on N-MCNs achieve energy density of 18.2 W·h·kg^(-1) and power density of 0.4 kW·kg^(-1) operated within a wide potential range of 0–1.6 V in 1.0 mol·L^(-1) Na_(2)SO_(4) solution,exhibiting its potential for electrode materials with high performance.
文摘THIN films have become more and more important in advanced technology,hence attracted theresearch interest in material science and technology.In chemistry,thin films are classified intoorganic and inorganic membranes.Compared with organic membranes,inorganic membranesexhibit high-temperature stability and surface modifications,and have potential