在计算机视觉领域,图像匹配是一个核心问题。为了提高图像特征点匹配算法的准确度,增强算法的抗干扰能力,针对ORB(oriented FAST and rotated BRIEF)算法的不足,提出一种改进的图像特征点匹配算法。该算法通过设置自适应阈值来进行特征...在计算机视觉领域,图像匹配是一个核心问题。为了提高图像特征点匹配算法的准确度,增强算法的抗干扰能力,针对ORB(oriented FAST and rotated BRIEF)算法的不足,提出一种改进的图像特征点匹配算法。该算法通过设置自适应阈值来进行特征点检测,并在算法粗匹配结果的基础上剔除不符合图像几何特性的部分外点。最后,利用仿射不变性约束筛选出精确匹配点。实验表明,该方法可有效提高算法匹配质量且执行时间短,对于不同模糊度和曝光度的图像匹配均具有很好的鲁棒性。展开更多
文摘在计算机视觉领域,图像匹配是一个核心问题。为了提高图像特征点匹配算法的准确度,增强算法的抗干扰能力,针对ORB(oriented FAST and rotated BRIEF)算法的不足,提出一种改进的图像特征点匹配算法。该算法通过设置自适应阈值来进行特征点检测,并在算法粗匹配结果的基础上剔除不符合图像几何特性的部分外点。最后,利用仿射不变性约束筛选出精确匹配点。实验表明,该方法可有效提高算法匹配质量且执行时间短,对于不同模糊度和曝光度的图像匹配均具有很好的鲁棒性。
基金supported in part by the National Natural Science Foundation of China(Nos.52376114,92041001)the Natural Science Foundation of Jiangsu Province(No.BK20200069)the National Science and Technology Major Projects(Nos.J2019-Ⅲ-0015-0059,2017-Ⅲ-0005-0029).