为纠正作业车间调度问题中蚁群算法搜索周期长、易陷入局部极小值的缺点,提出了一种改进的自适应非均匀窗口蚁群算法。首先,该算法通过自适应调整的非均匀窗口限制蚂蚁的移动范围,在缩短蚂蚁搜索周期的同时及时开辟新的解空间;然后,根...为纠正作业车间调度问题中蚁群算法搜索周期长、易陷入局部极小值的缺点,提出了一种改进的自适应非均匀窗口蚁群算法。首先,该算法通过自适应调整的非均匀窗口限制蚂蚁的移动范围,在缩短蚂蚁搜索周期的同时及时开辟新的解空间;然后,根据蚂蚁的多态性提出了蚂蚁跳跃窗口策略,赋予算法良好的跳出局部极小的能力;最后,鉴于作业车间调度中一个工件在多个机器上加工的特点,新算法对蚂蚁状态转移概率中的启发函数进行了改进,提高了路径的启发程度。通过对Muth and Thompson基准问题的仿真,验证了新算法的收敛性能。展开更多
文摘为纠正作业车间调度问题中蚁群算法搜索周期长、易陷入局部极小值的缺点,提出了一种改进的自适应非均匀窗口蚁群算法。首先,该算法通过自适应调整的非均匀窗口限制蚂蚁的移动范围,在缩短蚂蚁搜索周期的同时及时开辟新的解空间;然后,根据蚂蚁的多态性提出了蚂蚁跳跃窗口策略,赋予算法良好的跳出局部极小的能力;最后,鉴于作业车间调度中一个工件在多个机器上加工的特点,新算法对蚂蚁状态转移概率中的启发函数进行了改进,提高了路径的启发程度。通过对Muth and Thompson基准问题的仿真,验证了新算法的收敛性能。