A terminal sliding mode (TSM) control with self-tuning gain algorithm is proposed for the synchronization of coronary artery system under the existence of the unmodeled dynamics and the external disturbance. Conside...A terminal sliding mode (TSM) control with self-tuning gain algorithm is proposed for the synchronization of coronary artery system under the existence of the unmodeled dynamics and the external disturbance. Considering the sliding mode dynamics of sys- tem, a criterion of selecting the parameters is derived to reach the point of equilibrium in the finite time. The theoretic analysis based on Lyapunov theory proved that the systems with the proposed TSM control with self-tuning scheme could be stabilized in finite time. The proposed method shows that the drive and response systems are synchronized and states of the response system track the states of the drive system in finite time. This information about the bound of unmodeled dynamics and the external disturbance is not needed in advance through self-tuning the gains of controller. The results for coronary artery system synchronization simulation show that the proposed TSM controller with self-tuning achieves better robustness and adaptation against unmodeled dynamics and the external disturbance, which offer the theory basis on curing myocardial infarction.展开更多
基金This work is partially supported by National Natural Science Foundation of China under Grant Nos. 61503280, 61403278 and 61471243. The authors also gratefully acknowledge the anonymous reviewers for their valuable comments.
文摘A terminal sliding mode (TSM) control with self-tuning gain algorithm is proposed for the synchronization of coronary artery system under the existence of the unmodeled dynamics and the external disturbance. Considering the sliding mode dynamics of sys- tem, a criterion of selecting the parameters is derived to reach the point of equilibrium in the finite time. The theoretic analysis based on Lyapunov theory proved that the systems with the proposed TSM control with self-tuning scheme could be stabilized in finite time. The proposed method shows that the drive and response systems are synchronized and states of the response system track the states of the drive system in finite time. This information about the bound of unmodeled dynamics and the external disturbance is not needed in advance through self-tuning the gains of controller. The results for coronary artery system synchronization simulation show that the proposed TSM controller with self-tuning achieves better robustness and adaptation against unmodeled dynamics and the external disturbance, which offer the theory basis on curing myocardial infarction.